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Week 1 Interactive Assignment: Computer Technology and Instructions 

The five classical components of a computer are the input, output, control, datapath and 

memory.  These components work together to allow for full functioning of a computer. For 

example, for a speech to text application, the program needs to access instructions for the 

program from the memory of the computer.  Then it may require input through a microphone 

either embedded in the computer or connected to the computer. Once input is received, control 

directs how that data is manipulated. Datapath executes the computations to translate the input 

into text, and then output prints the data from the memory to the screen.   

Computer performance is a broad term used to describe a relationship when comparing 

the operation efficiency of different devices.  Before evaluating performance, a specific metric 

must be determined. The most common metrics used to describe computer performance are 

execution time (how quickly a single task is performed), and throughput (the rate at which 

multiple tasks are simultaneously completed over a given period of time). 

At the most basic level, computers perform computations by following sets of 

instructions.  An instruction is a line that includes an operator and operands. Possible operations 

include addition, subtraction, etc.  Operands are the values or registers referred to in the 

instruction line, and are used in the computation. Hardware and software interface through sets 

of instructions.  At the lowest level, software instructions are represented as a series of ones and 

zeros called machine language. These ones and zeros interact with the hardware through electric 

signals.   

Link to Concept Map: Classical Components of a Computer 

https://drive.google.com/file/d/1XqBX92mWO9TOmObnoTvN4MbV5KG6ngvP/view?usp=sharing


 

Week 2 Interactive Assignment: Arithmetic for Computers 

Binary addition involves adding columns of bit pairs, in a right to left direction.  The base 

TEN sum of the first vertical bit pair needs to be converted to base TWO.  For example, if the 

sum of a vertical bit pair in base TEN is 2, this value represented in base TWO (or binary) is 10.  

The least significant (right) bit of the sum is dropped below the vertical bit pair that were added, 

while the most significant bit (left) is carried up over the next pair of vertical bits.  Then the 

process of adding vertical bit pairs continues from right to left. 

Subtraction is a “bit” different in the sense that vertical bit pairs can be subtracted very 

simply, unless a vertical bit pair results in a need to subtract 0-1.  In this case, it may be easier to 

convert the second 32-bit binary number in the equation to the two’s complement representation 

of the number.  Once it is represented in two’s complement, the two 32-bit numbers would 



simply get added (since two’s complement creates a negative version of the second 32-bit 

number in the equation).  The process of adding again proceeds from right to left. 

Multiplication and division operations through the ALU are fairly similar to elementary 

multiplication and division that can be done by hand.  For example, in multiplication, the first 

operand is the multiplicand, and the second is the multiplier (Patterson & Hennessy, 2014).  The 

process starts by multiplying the multiplicand by the least significant digit of the multiplier.  The 

product is placed underneath.  Then the multiplicand is multiplied by the second least significant 

digit of the multiplier, and the product is placed under the first product, but shifted to the left one 

bit.  The process continues with bits from the multiplier moving right to left and the product 

always shifting one to the left from the product above.  At the end, the sum of all of the products 

is the final product.  Division is also performed in a similar fashion to long division, and may 

sometimes result in a remainder, in addition to the quotient. 

Example of Multiplication: 

   1000 

x   1001 

   1000 

            0000 

          0000 

       1000  

Product =       1001000 

 

Example of Division: 

 

              1001      Quotient  

1000 |1001010 

- 1000 

      10 

      101 

      1010 

-     1000 

          10      Remainder 

 



Floating point numbers “represent numbers in which the binary point is not fixed” 

(Patterson & Hennessy, 2014).  For example, the number 5.8 x 1015 is written in scientific 

notation, and can be represented in a program as a floating-point number.  As discussed 

previously, computations with floating point numbers can occasionally cause problems, 

especially when there are limitations in the register size.  Limitations in hardware can cause 

undesirable outcomes due to lack of precision.  As exemplified by Patterson and Hennessy 

(2014): “let's see if c + (a + b) = (c + a) + b. Assume c = -1.5ten × 1038, a = 1.5ten × 1038, and b 

= 1.0, and that these are all single precision numbers.” 

c + (a + b) = -1.5E38 + (1.5E38 + 1.0) 

 = -1.5E38 + (1.5E38) 

 = 0 

(c + a) + b = (-1.5E38 + 1.5E38) + 1.0 

 = (0.0) + 1.0 = 1.0 

 = 1.0 

 

According to Patterson and Hennessy (2014), parallelism is used “to perform 

simultaneous operations on short vectors of sixteen 8-bit operands, eight 16-bit operands, four 

32-bit operands, or two 64-bit operands.  This allows operations to occur more efficiently: 

“parallelism occurs within a wide word, the extensions are classified as subword parallelism” 

(Patterson & Hennessy, 2014). 

 

 

 

 

 



Link to Flowchart: Multiplication Algorithm  

 

Hardware Diagram (COD Figure 3.3) 

 

Multiplication Algorithm Flow Chart 

 

https://www.draw.io/#G15vFYV-qGuoxszF-Sj9do-jNhOtkUbVHg


Week 3 Interactive Assignment: The Processor 

Computer performance is a hot topic in technology today, due to the growing need to 

process large amounts of data as quickly as possible.  Performance can be affected by instruction 

count, clock cycle time, and clock cycles per instruction.  While the instruction count is 

determined by the compiler and instruction set architecture (ex. MIPS), the processor affects the 

clock cycle time and cycles per instruction (CPI) (Patterson & Hennessy, 2014). 

Implementation depends on both the instruction set, as well as the processor and 

associated elements (hardware components).  Basic implementation of an instruction involves 

fetching the instruction from the correct address in memory, reading the register(s) expressed in 

the instruction, performing a computation in the ALU (either an operation for an R-type 

instruction, calculating the next memory address for a memory instruction, or comparing for a 

branch instruction), accessing an operand in the data memory, and writing the result to a register. 

All instruction types need some basic elements in the datapath.  In order to fetch 

instructions, a memory unit is required, which stores instructions for the desired program. In 

addition, the program counter (PC) is used to fetch the instruction from the correct memory 

address.  An adder (part of the ALU) is necessary to compute the address for the next instruction.  

Other elements utilized in the datapath depend on the instruction type.  For example, R-type 

instructions require the register file (which contains registers holding operands), and the ALU to 

perform operations.  Memory instructions require the data memory unit (to load from or store 

words to), as well as the sign extension unit.  Branch instructions use the ALU to evaluate a 

branch condition, and require an additional adder to compute the new branch target if the 

conditional evaluates to true. 



Patterson and Hennessy (2014) provide a great example of the datapath for an R-type 

instruction: add $t1, $t2, $t3.  In order to build this datapath the processor would need the 

memory unit (which contains the instructions for the program), the PC (which contains the 

memory address of the instruction), the adder (to compute the address of the next instruction if 

there was one in the program), the ALU (to execute the operation: add $t1, $t2, $t3), and then the 

result would be written back into the register file in register $t1.  

Pipelining increases the performance of a processor by allowing multiple instructions to 

be executed simultaneously.  Historically, a single-cycle without pipelining only allowed for one 

instruction to be executed per clock cycle.  However, in single-cycle with pipelining, modern 

processors allow datapaths for multiple instructions to run simultaneously, as long as the 

elements needed for a subsequent data path are available.  Therefore, rather than a single cycle 

resulting in the execution of one instruction, a single cycle results in the execution of multiple 

instructions.  Even though the execution time for a single instruction is not affected, the 

throughput is much higher.  Pipelining is accompished by organizing the execution of 

instructions into five stages.  Once a datapath is past a certain stage, elements from the previous 

stage become available for use by the next instruction. Therefore, instructions are executed in a 

staggered fashion in the pipeline approach. 

To provide an example, the five stages in a pipelined approach are: 1) IF- Instruction 

Fetch; 2) ID- Instruction decode and register file read; 3) EX- Execution or address calculation; 

4) MEM- Data memory access; and 5) WB: Write back.  In single-cycle without pipelining, an 

instruction would go through each of the five stages (IF, ID, EX, MEM, and WB) completely, 

before the next instruction begins execution.  On the other hand, in single-cycle with pipelining, 

new instructions begin execution before the previous instruction has completed the cycle.  In 



other words, if there are three instructions in a program, instruction one goes through stage IF in 

the first clock cycle.  During the second clock cycle, instruction one is in stage ID, while 

instruction two is in IF. During the third clock cycle, instruction one is in EX, instruction two is 

in ID, and instruction three is in IF, and so on.  The differences in single-cycle without versus 

with pipelining can be seen in the figures below.   

 

Link to Diagram: Single Clock Cycle Without Pipelined Performance 

 

The Single-Cycle Datapath Without Pipelining 

 

 

 

 

 

 

https://drive.google.com/file/d/1rU6NZCNh4LUHKJroPWoPmT2YUUGKHuKo/view?usp=sharing


Link to Diagram: Single Clock Cycle with Pipelined Performance 

 

The Pipelined Version of the Single-Cycle Datapath 

 

 

Week 4 Interactive Assignment: Exploiting Memory Hierarchy 

This week’s diagram (COD Figure 5.3 from Patterson & Hennessy below) reflects the 

organization of the memory hierarchy.  A memory hierarchy is used in the architecture of 

computers so that, “the user has the illusion of a memory that is as large as the largest level of 

the hierarchy, but can be accessed as if it were all built from the fastest memory”.  The hierarchy 

is organized in such a way that the fastest memory (cache) has the smallest storage capacity and 

is located in the closest proximity to the processor, while the slowest memory (secondary 

memory) has the largest storage capacity, and is the farthest away from the processor.  In 

addition, the fastest memory is the most expensive, while the slowest memory is the least 

expensive (Patterson & Hennessy). 

https://drive.google.com/file/d/1gFjJsfPlrroz8JPabdcZYfe_92SQxXjy/view?usp=sharing


Link to Diagram: Memory Hierarchy 

 

 At the top of the memory hierarchy is the CPU registers (Level 1 above).  The next level 

is the cache (Level 2 above).  The cache is SRAM (static random access memory).  It is closest 

to the processor, more expensive than DRAM (dynamic random access memory), uses more area 

per bit of memory, needs minimal power, and doesn’t need to refresh.  Next in the hierarchy is 

the main memory (Level 3 above).  The main memory is DRAM, and it is farther from the 

processor than SRAM, denser and cheaper, uses less area per bit of memory, needs more power, 

and needs to be refreshed.  The next level in the hierarchy is secondary memory (Level 4 above).  

Personal mobile devices use flash memory, which can get worn about by writes, so flash 

memory utilizes wear leveling to shift block around to prevent wear.  The secondary memory in 

most PC’s use magnetic disc hardware.  Magnetic discs are the cheapest and largest hardware.  

https://drive.google.com/file/d/1BH8UILPawPI-CTsAe5CWApX4-1MZ_Tsl/view?usp=sharing


They are a collection of metal platters covered in magnetic recording material, and a read-write 

head aligns tracks and then sectors to read and write data (Patterson & Hennessy).  

According to Patterson & Hennessy (2014), cache is “a term is also used to refer to any 

storage managed to take advantage of locality of access.”  The simplest form of cache is direct-

mapped, meaning that each memory location is mapped to one location in the cache (Patterson & 

Hennessy, 2014).  In order to determine whether an address reference is a hit or a miss, the 

address is broken down into two parts, the index and the tag.  The index consists of the lower bits 

of the address and correspond to a location in the cache.  If the index reference results in a hit in 

the cache, then the tag (the upper bits in the address) are used to identify whether the word in the 

cache matches the requested word.  The first few references to an empty cache will come back as 

misses.  Then the cache fills up with data that has been copied from the memory to fulfill those 

misses.  When a reference results in a miss that prompts the retrieval of data from a memory 

address that conflicts with a full index in the cache, the new data overwrites the contents at that 

cache index. 

Cache performance is measured by a number of different indicators including memory-stall 

cycles (from cache misses), read-stall cycles, write-stall cycles, miss rate, and average memory 

access time (AMAT), which accounts for both hits and misses.  These indicators of performance 

can be improved in a number of ways.  For example, “Larger blocks exploit spatial locality to 

lower miss rates” (Patterson & Hennessy, 2014).  However, if blocks become too large relative 

to the cache, the number of blocks decreases, and there is competition between blocks, which can 

slow performance.  A write buffer can also improve performance by storing data that is waiting 

to be written to memory.  Write-back schemes can increase performance by waiting to modify 

blocks in lower regions of the hierarchy until the block is replaced.  A split cache (separate 



caches for instructions and data) in conjunction with increased bandwith can allow blocks to be 

transferred more efficiently.  Other methods of improving performance include increasing the 

clock rate, allowing for more flexible placement of blocks, and utilizing a second-level cache to 

reduce the miss penalty from the first cache. 

 Dependable memory hierarchy utilizes the principle of redundancy.  Losing data can be 

catastrophic.  In an attempt to prevent this from happening, and to make memory more 

dependable, computer architects have found three ways to improve Mean Time to Failure 

(MTTF).  Mean Time to Failure is a measure of “the percentage of devices that would be 

expected to fail in a year” (Patterson & Hennessy, 2014).  The three ways to improve MTTF are:  

1) Fault avoidance: Preventing fault occurrence by construction. 

2) Fault tolerance: Using redundancy to allow the service to comply with the service 

specification despite faults occurring. 

3) Fault forecasting: Predicting the presence and creation of faults, allowing the component 

to be replaced before it fails. (Patterson & Hennessy, 2014) 

Through the consideration of these guidelines in the design process for modern computers, 

architects have been able to establish a dependable memory hierarchy for businesses and 

consumers. 

 Virtual machines are, “emulation methods that provide a standard software interface” 

(Patterson & Hennessy, 2014).  For example, I used a virtual machine when I completed the 

Programming Concepts course here at Ashford University and we utilized a virtual Java 

environment.  Virtual machines have become desirable for a number of reasons.  They provide 

isolation and security, avoid failures in security and the reliability of operating systems, allow 

sharing of one computer (especially in cloud computing), and have an overhead that is more 



acceptable than in the past (Patterson & Hennessy, 2014).  Virtual machines run on a host 

hardware platform and provide the illusion of a fully functional operating system independent of 

the user’s own. 

 Virtual memory is desired because of “efficient and safe sharing of memory among 

multiple programs, such as for the memory needed by multiple virtual machines for Cloud 

computing, and to remove the programming burdens of a small, limited amount of main 

memory” (Patterson & Hennessy, 2014).  Virtual memory overcomes the limitations of 

traditional memory and allows users to share a machine without interfering with the activities or 

devices of other users.  Reading and writing is done independently with no affect to other users.  

In contrast to traditional memory, virtual memory blocks are known as pages and virtual memory 

misses are known as page faults (Patterson & Hennessy, 2014). 

Week 5 Interactive Assignment: Computer Architecture Parallelism 

The overall goal of computer architecture parallelism is to increase performance and 

throughput.  It is important to recognize that there are different types of parallelism: task-level 

parallelism (or process-level parallelism) and parallel processing programs.  Task-level 

parallelism utilizes “multiple processors by running independent programs simultaneously” 

(Patterson & Hennessy, 2014).  A parallel-processing program is, “a single program that runs on 

multiple processors simultaneously” (Patterson & Hennessy, 2014).  Regardless of the type of 

parallelism used, the goal is to design software that runs more efficiently on a microprocessor 

than on a uniprocessor implementing instruction-level parallelism. 

Part of the drive for increased performance from processors is due to the need for 

solutions to scientific and business problems that require extreme processing power at reduced 

costs and low energy.  According to Patterson & Hennessy (2014), the energy problem “means 



that future increases in performance will primarily come from explicit hardware parallelism 

rather than much higher clock rates or vastly improved CPI.”  In addition to hardware 

parallelism, programmers now need to design and build code that optimizes these advancements 

in hardware.  For example, “sequential code now means slow code” (Patterson & Hennessy, 

2014).  In the past, software was designed for uniprocessors, but today’s developers design for 

the future in anticipation that the cores per chip will be scaled. 

In addition to the evolution of multicore microprocessors, computer architects have used 

these CPU’s as inspiration for a different type of processor, Graphics Processing Units 

(GPU’s).  GPU’s emerged as a result of an increased demand for gaming.  There are a number of 

differences between GPU’s and CPU’s.  For example, GPU’s only execute a subset of the 

functions that a CPU can.  However, this “allows them to dedicate all their resources to graphics” 

(Patterson & Hennessy, 2014).  Therefore, what a GPU cannot handle, the CPU makes up for.  In 

addition, “The GPU problems sizes are typically hundreds of megabytes to gigabytes, but not 

hundreds of gigabytes to terabytes” (Patterson & Hennessy, 2014).  GPU’s also have a different 

approach to hiding memory latency.  Instead of utilizing multi-level caches, they rely on 

hardware threading.  Finally, memory in GPU’s emphasizes an increase in bandwith, and GPU’s 

have more processors than CPU’s.  For example, the new NVidia Titan V GPU has 5,120 cores 

(Nvidia Corporation, 2018)! 

 

 

 

 

 

 

 

 

 

 



Link to Concept Map: Parallel Processors 

 
 

Fundamental Concepts that Influence Computer Organization and Architecture 

 The fundamental concepts that influence computer organization and architecture include 

the instruction set architecture, arithmetic and operations, parallelism, hardware elements, 

software, the processor, control, datapaths, pipelining, and memory hierarchy.  Even when 

writing software, it is important for programmers to understand the fundamentals of computer 

architecture, since a smooth interface between the hardware and software can either increase or 

degrade the performance of a system.  Organizations will utilize these concepts to increase the 

life of devices, anticipate additional cores in future processors, avoid errors in performance, 

make software migrations from uniprocessor to multiprocessor systems more seamless, and 

increase performance while maintaining minimal weight, energy consumption, and cost in future 

devices.   

https://drive.google.com/file/d/17JPr-doGPCJUkHaLWsBKbQ74k4xPZk0o/view?usp=sharing
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