

Final Assignment—E-Commerce Website Test Plan

Alicia Piavis

CST313: Software Testing

Robert Key

05/02/2020

E-Commerce Website Test Plan Page ii

Table of Contents

Table of Contents .. ii
Revision History .. ii
1. Software Requirements Specification ... 3

1.1 Introduction .. 3
1.2 Overall Description ... 4
1.3 External Interface Requirements .. 5
1.4 System Features .. 6
1.5 Other Non-Functional Requirements Error! Bookmark not defined.3

2. Testing Levels and UML Models ... 14
2.1 Introduction .. 14
2.2 Component Testing ... 15
2.3 Integration Testing .. 16
2.4 System Testing .. 16
2.5 Acceptance .. 16
2.6 UML Models .. 17

3. Review and Testing Strategies .. 20
3.1 Overview of Review Strategies ... 20
3.2 Recommended Review Strategies .. 23
3.3 Static Testing Strategies .. 24
3.4 Dynamic Testing Strategies ... 26

4. Test Management Strategy .. 29
4.1 Test Teams .. 29
4.2 Test Roles .. 30
4.3 Exit Criteria .. 30
4.4 Test Estimated Effort .. 31
4.5 Test and Risk ... 31
4.6 Incident Reporting .. 32
4.7 Defect Classification .. 33
4.8 Configuration Management.. 34

5. Test Tools .. 35
5.1 Introduction .. 35
5.2 Test Management and Control Tools ... 35
5.3 Test Specification Tools .. 36
5.4 Static Testing Tools ... 37
5.5 Dynamic Testing Tools .. 37
5.6 Non-Functional Testing Tools ... 38

6. Resources .. 40
Appendix A: Glossary ... 43

Revision History

Name Date Reason For Changes Version

E-Commerce Website Test Plan Page 3

1. Software Requirements Specification

1.1 Introduction

1.1.1 Purpose

This software requirements specification (SRS) outlines the requirements for the e-commerce website

software build. The purpose of the e-commerce website is to allow customers a way to quickly find and

purchase what they desire from a range of options. This document refers to version 1.0 of the e-

commerce website. The scope of this SRS encompasses the entirety of the initial build of the e-

commerce website, including the basic features described in section 4, as well as other non-functional

requirements described in section 5.

1.1.2 Document Conventions

This document is broken into 5 sections with headers for Introduction, Overall Description, External

Interface Requirements, System Features, and Other Non-Functional Requirements. Sub-headers

provide detail regarding the specifics of those sections.

1.1.3 Intended Audience and Reading Suggestions

This SRS is intended for UI/UX designers, software designers, architects, developers, project managers,

testers, and other stakeholders involved in the execution of this project. It is suggested that all audience

members read the document from start to finish in order to gain a thorough understanding of the

purpose and requirements of the e-commerce website.

1.1.4 Product Scope

The goal of the e-commerce website is to allow a user to find what they are looking for quickly and

easily. The website will allow a user to search for an item, select a search suggestion, narrow down a

search by selecting different filters for an item, view details about an item, add an item to a cart,

E-Commerce Website Test Plan Page 4

continue shopping, and then checkout when they are ready. The development of this e-commerce

website aligns with the business objective to increase growth and profitability.

1.2 Overall Description

1.2.1 Product Perspective

The build for the e-commerce website is a new, self-contained product.

1.2.2 Product Functions

A user should be able to search for an item, and narrow down their search by selecting different filters

for an item, they should be able to view details about an item, add an item to a cart, continue shopping,

and then checkout when they are ready. In addition, there should be different filters for different types

of items. In other words, items should be categorized into groupings of similar items. Furthermore,

there should be search suggestions when a user starts typing, so that the correct category of item can be

retrieved.

1.2.3 User Classes and Characteristics

User classes for the e-commerce website include customers, vendors, and administrators. The customer

class will need to be able to search select, and purchase items. The vendor class will need to be able to

add new items for availability, and update their current inventory of listings. Administrators will need to

be able to access all functionalities, including adding, updating, and deleting item listings, as well as

assisting users in logging into their accounts and resetting their login information. Administrators

should also be able to look up a confirmed order by an order ID number. The primary user class for the

e-commerce website is the customer user class.

E-Commerce Website Test Plan Page 5

1.2.4 Operating Environment

The e-commerce website needs to have cross-platform functionality, as well as be mobile responsive.

The website should function on all major web browsers, including Chrome, Internet Explorer, Edge, Bing,

Yahoo, and Safari. In addition, it should function properly on both Mac and Windows operating systems,

as well as iOS and Android.

1.2.5 Design and Implementation Constraints

The e-commerce website needs to be built within 6 months, and must utilize a relational database. In

addition, all passwords for user accounts must use encryption. In order to comply with company policy,

the website must abide by ADA web accessibility guidelines (ADA, 2007). Furthermore, the system will

be maintained by the customer, so the design and build should support modifiability, maintainability,

and testability.

1.2.6 User Documentation

In addition to the requested functionalities of the E-Commerce Website, the site will also include

documentation aimed at users who need assistance troubleshooting or guidance in creating a user

account. Furthermore, the site will have a chat bot, which allows users to request assistance when

needed.

1.2.7 Assumptions and Dependencies

Constraints for the project include a budget of $50,000, a timeline of 6 months, and a project team of no

more than eight, which includes designers, architects, database administrators, developers, testers, and

project managers.

1.3 External Interface Requirements

1.3.1 User Interfaces

Each page of the E-Commerce Website should have the same header, footer, and navbar for

consistency. Icons should all be selected from Font Awesome. Each page should contain a back arrow in

E-Commerce Website Test Plan Page 6

the same location that allows a user to return to the previous page. All images should include alt tags,

and users should be able to tab through a page. In addition, colors should be selected for usability and

visual appeal, and fonts should be easily readable. Ads should not draw attention away from the main

content of the page, and general layout should be consistent across pages. The home button should be

clearly visible on every page. Furthermore, forms should provide users with clear feedback instructing

them how to correct errors when they are made.

1.3.2 Hardware Interfaces

The E-Commerce Website should be accessible from all major devices including iOS and Android phones,

iPads and other tablets, and both Mac and Microsoft products. The site will use HTTP to make requests

and TCP to transfer resources from the web server to the client. The website should also support screen

readers.

1.3.3 Software Interfaces

The website should be compatible with iOS, Android, Mac, and Windows operating systems. The build

should also include an API that talks to the relational database in order to store and retrieve customer,

product, and transactional data. In addition, the site should allow single sign on with options to sign in

using Google or Facebook accounts.

1.3.4 Communications Interfaces

Users should be able to receive email notifications upon confirmation of an order, as well as optional

newsletters and deal notifications related to their preferences and order history. In additional all

personally identifiable information (PII) should be secure, and all passwords should be encrypted.

1.4 System Features

1.4.1 New User Can Create an Account

1.4.1.1 Description and Priority

E-Commerce Website Test Plan Page 7

• Priority: High

• Description: User should be able to create an account. This encompasses part of the

basic functionality of the website. A user cannot make a purchase without creating an

account.

• Benefit: 9

1.4.1.2 Stimulus/Response Sequences

• User gets prompted on the home page to log in or create an account

• User clicks on register

• User enters form data to create account

• User clicks submit

• User receives positive confirmation that account has been created or clear instructions

regarding how to correct their input

1.4.1.3 Functional Requirements

• REQ-1: Website should present user with two buttons on home page (login and

register)

• REQ-2: Website should present registration form when user clicks on “register”

• REQ-3: Data from form is validated, sanitized, processed, and sent to the database

when a user hits “submit”

• REQ-4: Website presents user with informative messages if input does not meet

requirements

• REQ-5: Website provides user with success message when account has been

successfully created

E-Commerce Website Test Plan Page 8

1.4.2 Returning User Can Login

1.4.2.1 Description and Priority

• Priority: High

• Description: Returning user should be able to login. This encompasses part of the basic

functionality of the website. A user cannot make a purchase without logging in.

• Benefit: 9

1.4.2.2 Stimulus/Response Sequences

• User gets prompted on the home page to log in or create an account

• User clicks on login

• User enters form data to login

• User clicks submit

• User receives positive confirmation that they have been logged in or clear instructions

regarding how to correct their input

1.4.2.3 Functional Requirements

• REQ-1: Website should present user with two buttons on home page (login and

register)

• REQ-2: Website should present login form when user clicks on “login”

• REQ-3: Data from form is validated, sanitized, processed, and sent to the database

when a user hits “submit”

• REQ-4: Website presents user with informative messages if input does not meet

requirements

• REQ-5: User credentials are verified against user information stored in the database

E-Commerce Website Test Plan Page 9

• REQ-6: Website provides user with success message when account has been

successfully created

1.4.3 User Can Search For An Item

1.4.3.1 Description and Priority

• Priority: High

• Description: User should be able to search for an item. This encompasses part of the

basic functionality of the website. A user cannot find an item without being able to

search for it.

• Benefit: 8

1.4.3.2 Stimulus/Response Sequences

• User types into the search bar

• User is provided with search suggestions

• User selects a search suggestion

• User is presented with a list of search results

• User selects filters to narrow search results

1.4.3.3 Functional Requirements

• REQ-1: Website should have a search bar

• REQ-2: Website should dynamically present user with search suggestions

• REQ-3: Website should return search results when user selects suggestion

• REQ-4: Website should dynamically generate filters depending on the category that the

item falls into

• REQ-5: Website should update search results when filters are selected

E-Commerce Website Test Plan Page 10

1.4.4 User Can View Item Details

1.4.4.1 Description and Priority

• Priority: High

• Description: User should be able to view item details. A user will be hesitant to make a

purchase without having the ability to view item details.

• Benefit: 7

1.4.4.2 Stimulus/Response Sequences

• User clicks on an item link from the search results list

• User views item details

1.4.4.3 Functional Requirements

• REQ-1: Search results list has links for each item

• REQ-2: When link is clicked, user is redirected to page that presents item details

1.4.5 User Can Add Item to Cart

1.4.5.1 Description and Priority

• Priority: High

• Description: User should be able to add an item to their virtual cart. This encompasses

part of the basic functionality of the website. A user cannot make a purchase without

first adding an item to the cart.

• Benefit: 8

1.4.5.2 Stimulus/Response Sequences

• User clicks on button to add item to cart

• User is presented with option to check out or continue shopping

E-Commerce Website Test Plan Page 11

• If user selects “continue shopping”, they are redirected to the search page

• If user selects “checkout”, they are redirected to the checkout page

1.4.5.3 Functional Requirements

• REQ-1: Item detail page should have “add to cart” button

• REQ-2: Website should update cart icon with correct number of items when a user adds

an item to their cart

• REQ-3: Website should present user with an option to “continue shopping” or

“checkout”

• REQ-4: If user selects “continue shopping”, website redirects them to the search page

• REQ-5: If user selects “checkout”, website redirects them to the checkout page

1.4.6 User Can View Their Cart

1.4.6.1 Description and Priority

• Priority: Medium

• Description: User should be able to view their cart. Most users want to be able to view

their cart before committing to a purchase.

• Benefit: 7

1.4.6.2 Stimulus/Response Sequences

• User clicks on the cart icon at the top right of the page

• User views a list of their cart items

• User can edit or delete cart items

1.4.6.3 Functional Requirements

E-Commerce Website Test Plan Page 12

• REQ-1: Cart icon at top right of the page should be a link that redirects the user to the

cart view

• REQ-2: The cart view should present the user with a list of the items they added,

including a short description of the item, the quantity, and the price

• REQ-3: The cart view should show the user’s projected total

• REQ-4: Website should allow a user to delete items from the cart or update the

quantity

• REQ-5: Website will refresh cart view after a user updates quantities or deletes items

• REQ-6: Cart view has a “checkout” button

1.4.7 User Can Checkout

1.4.7.1 Description and Priority

• Priority: High

• Description: User should be able to checkout. This encompasses part of the basic

functionality of the website. A user cannot make a purchase without checking out and

initiating a transaction.

• Benefit: 9

1.4.7.2 Stimulus/Response Sequences

• User clicks on the cart icon

• User clicks on “checkout” button

• User is presented with checkout form

• User enters form data

• User clicks submit

E-Commerce Website Test Plan Page 13

• User receives positive confirmation that order has been placed or clear instructions

regarding how to correct their input

1.4.7.3 Functional Requirements

• REQ-1: Website should have “checkout” button on cart view page

• REQ-2: Website should redirect user to checkout page when button is clicked

• REQ-3: Website should present checkout form

• REQ-4: Data from form is validated, sanitized, processed, and sent to the database

when a user hits “submit”

• REQ-5: Website presents user with informative messages if input does not meet

requirements

• REQ-6: Website provides user with success message when order has been processed

1.5 Other Nonfunctional Requirements

1.5.1 Performance Requirements

New users should be able to create an account in less than 60 seconds. When a user searches for an

item, they should receive a list of search results in less than 3 seconds. Once a user hits the “checkout”

button, they should be able to complete the checkout form and receive a confirmation message in

under 2 minutes. Speed is of utmost importance, as delays may cause a poor user experience and may

deter users from returning to the site in the future.

1.5.2 Safety Requirements

Before a user confirms an order, the website needs to confirm that the user is over age 14. All PII should

be protected, and passwords should be encrypted. In addition, sessions should timeout after 5 minutes

without activity, unless the user confirms that they want to continue the session.

E-Commerce Website Test Plan Page 14

1.5.3 Security Requirements

All PII should be protected and secure. Credentials should be verified before a user is given access to

account information. In addition, passwords should be encrypted. Credit card information should not

be stored, and transactions should be processed securely.

1.5.4 Software Quality Attributes

The E-Commerce Website should follow web accessibility guidelines outlined by ADA (n.d.). In addition,

the site should be easy to use and navigate. The website should be reliable, as interruptions in service

may deter users from returning. The site should be scalable to accommodate for business growth and

an increasing userbase. It is important that the site be modifiable, to allow for the addition of new

features, and the product should be maintainable and testable, as maintenance will be the responsibility

of the customer.

1.5.5 Business Rules

Users should not be allowed to add items to a cart, checkout, or view their account information unless

they are logged in. Administrators should have the ability to assist users in resetting credentials. They

should also be able to search for order details using a reference number for administrative purposes.

Finally, administrators should be able to retrieve a list of all orders, past and present, for reporting

purposes.

2. Testing Levels and UML Models

2.1 Introduction

It is imperative to test software throughout the development lifecycle in order to ensure a quality

product. When performed effectively, testing can save costs, reduce development time, improve

maintainability, improve code quality, identify and correct faults early in the process, increase

robustness, and ensure that the customer is receiving a quality product that meets their needs and

E-Commerce Website Test Plan Page 15

desires. The four levels of testing are component testing, integration testing, system testing, and

acceptance testing (Spillner, Linz, & Schaefer, 2014). Component testing breaks software down into

functional units, and tests whether or not these units meet the required specifications. Integration

testing occurs when groups of related components are tested together to identify faults in the interfaces

and interactions between components (GeeksForGeeks, n.d.). System testing “specifically focuses on

testing the functional and non-functional aspects of the software in more comprehensive manner

including security, usability, performance and compatibility.” (Suffian et.al., 2016). Acceptance testing

ensures that the software meets the customer’s needs, and works in a production-level environment.

2.2 Component Testing

In regards to the E-Commerce Website, component testing will occur for each of the different

functionalities illustrated in the use case diagram in Figure 1. For example, the software will have

components that carry out each of the different functions: populating search suggestions when a

customer starts typing into the search bar, dynamically generating filters once a user selects a search

suggestion, displaying the search results as a list, showing item details when a user clicks on a link from

the list, allowing a user to add an item to their cart, displaying the cart when a user wants to view the

cart, carrying out a transaction when a user needs to checkout, and displaying a confirmation page.

There will also be components that handle functionalities linked to other user groups, such as

administrators and vendors. Components that might be used for administrators include those that

allow an administrator to create a report, pull a report, delete a report, and update a report. There will

also be components that allow vendors to add new items to the E-Commerce Website, update item

details, and be notified when inventory is low. Components will also include the classes shown in Figure

3. These classes include E-Commerce System Manager, User, Customer, Vendor, Administrator, Report,

Item, Cart Item, Cart, Delivery Method, and Invoice. All of these components should be thoroughly

tested to ensure that they address the use cases in Figure 1, the activity diagram in Figure 2, the class

E-Commerce Website Test Plan Page 16

diagram in Figure 3, and the sequence diagram in Figure 4. Component-level testing will also ensure

that the code is maintainable, effective, robust, performant, and lacks faults.

2.3 Integration Testing

The E-Commerce System will also need to go through integration testing. Integration testing allows

testers and developers the ability to “discover faults and bugs in the interaction between integrated

components” (Ali et.al., 2018). Once all of the components mentioned above are thoroughly tested on

their own, test cases will be made to evaluate the collaboration of components. For example, Figure 4

illustrates the classes that are necessary in a sequence of events that allow a customer to place an

order. While each of these classes might have passed testing at the component level, the real test is

whether or not the control flow and data flow is successful across the interfaces and interactions

between components.

2.4 System Testing

After integration tests are complete, the E-Commerce Website will need to go through a series of

system tests, which assess whether or not the website as a whole meets functional and non-functional

requirements. For example, does the website possess all of the functionalities shown in the activity

diagram? Is the E-Commerce website fast, reliable, available, secure, and maintainable? The testers

and developers at this point need to view the system from a user perspective, and test the system in an

environment that is as close to production-level as possible.

2.5 Acceptance Testing

Finally, the E-Commerce Website will go through acceptance testing. This process will involve

customers to ensure that the system provides them with all of the functionality they need to quickly

search for and purchase items. Administrators will need to provide feedback regarding whether or not

they can quickly and easily access reports, and vendors will need to determine if they can adequately

use the website to sell new products, and view and update inventories. Acceptance testing will take

E-Commerce Website Test Plan Page 17

place across different operating systems and devices to ensure that all users will have a positive user

experience. Performing the four levels of testing (component, integration, system, and acceptance) will

support the development team in delivering a high-quality product as efficiently and quickly as possible.

2.6 UML Models

Figure 1. Use Case Diagram for E-Commerce Website

https://drive.google.com/file/d/1LfmawHux6gAJ0gLD6yraIynDRdeX_6Q_/view?usp=sharing

E-Commerce Website Test Plan Page 18

Figure 2. Activity Diagram for E-Commerce Website

https://drive.google.com/file/d/1sgkC7xIdKD98rcpkB9fqZmNoRWmaVewu/view?usp=sharing

E-Commerce Website Test Plan Page 19

Figure 3. Class Diagram for E-Commerce Website

https://drive.google.com/file/d/1L3Sbp-6CODD9fe-_KKhunovSNKHLSBog/view?usp=sharing

E-Commerce Website Test Plan Page 20

Figure 4. Sequence Diagram for E-Commerce Website

3. Review and Testing Strategies

3.1 Overview of Review Strategies

3.1.1 Walkthrough

A walkthrough is an informal review method used to find “defects, ambiguities, and problems in written

documents” (Spillner, Linz, & Schaefer, 2014). The author of the code presents to an audience with the

goal of education. This strategy involves a meeting, but there is no time limit, and little preparation is

involved. Often, the meeting includes walk throughs of different use cases, with the reviewers asking

spontaneous questions. Because the review is informal and utilizes spontaneous questions, no template

is necessary for documentation. Walk throughs occur in small group settings and require few resources.

https://drive.google.com/file/d/1UYfWci_rFd47sSnMzQsicg7daftKP6ij/view?usp=sharing

E-Commerce Website Test Plan Page 21

According to Software testing foundations: A study guide for the certified tester exam (4th ed.) (2014),

“The main objectives of a walkthrough are mutual learning, development of an understanding of the

review object, and error detection.”

3.1.2 Inspection

Inspections are very formal. They involve clearly defined roles for individuals, rules, protocols, and

checklists (Spillner, Linz, & Schaefer, 2014). The planning phase for inspections revolves around defining

objectives. A moderator facilitates the meeting and follows a clear agenda. The goals of an inspection

include “finding unclear items and possible defects, measuring review object quality, and improving the

quality of the inspection process and the development process” (Spillner, Linz, & Schaefer, 2014). This

strategy involves more preparation, and aims to improve the overall development process, in addition

to simply reviewing the software for defects (Spillner, Linz, & Schaefer, 2014). A sample inspection

template can be seen in Figure 5 (Fox, 1999).

E-Commerce Website Test Plan Page 22

Figure 5. Sample Inspection Checklist (Fox, 1999)

3.1.3 Technical Reviews

Technical reviews aim to ensure that test objects meet their specifications (Spillner, Linz, & Schaefer,

2014). While this strategy involves a review meeting, the author typically does not intend. Instead, the

reviewers do a considerable amount of preparation work to review the object and provide their

feedback. The meeting involves a recorder who takes notes, consolidates feedback from the reviewers,

and generates the final document with the results (Spillner, Linz, & Schaefer, 2014). In addition to

feedback, these review meetings involve discussions around possible alternatives, as well as possible

errors and defects. The reviewers must each have a certain level of technical expertise in order for this

process to be successful. Templates for technical reviews can be seen in Figure 6 below (Carnegie

Mellon, 1991).

E-Commerce Website Test Plan Page 23

Figure 6. Sample Technical Review Checklists (Carnegie Mellon, 1991)

3.1.4 Informal Reviews

Informal reviews are a lighter version of a technical review. They are author-initiated, and the planning

phase involves choosing reviewers and letting them know when to deliver feedback (Spillner, Linz, &

Schaefer, 2014). There is typically no meeting involved, but instead, colleagues cross-read each other’s

comments. In addition, the results are not explicitly documented, so there are no templates used.

Examples of informal reviews include pair programming, buddy testing, and code swapping (Spillner,

Linz, & Schaefer, 2014). This strategy is common because it is low cost, and little effort is required. In

addition, the process encourages discussion and knowledge transfer amongst colleagues.

3.2 Recommended Review Strategies

For the development of the E-Commerce Website, it is recommended to use walkthroughs, technical

reviews, and informal reviews. While inspections can be beneficial, they require a considerable amount

of time, coordination, and expertise. Walkthroughs, technical reviews, and informal reviews will provide

E-Commerce Website Test Plan Page 24

sufficient methods for identifying defects, verifying requirements, and improving code quality,

readability, and maintainability while reducing time and cost.

3.3 Static Testing Strategies

3.3.1 Tools

The following tools will be used for static testing of the E-Commerce Website: an IDE or text editor, a

compiler, and a linter. These tools will allow the developers and testers to identify syntax violations,

cross-reference program elements, check data types, detect undeclared variables, detect dead code,

and check interface consistency (Spillner, Linz, & Schaefer, 2014). Aside from detecting errors, the IDE

and linter will also ensure that code is more readable and consistent since there will be multiple

developers collaborating on the E-Commerce Website. The IDE and compiler will also assist developers

in debugging.

3.3.2 Compliance to Conventions and Standards

According to Software testing foundations: A study guide for the certified tester exam (4th ed.) (2014),

"Compliance to conventions and standards can also be checked with tools. For example, tools can be

used to check if a program follows programming regulations and standards." Tools within the IDE and

linter mentioned above should be utilized to implement rules that enforce proper coding conventions

and standards. In addition, once the programming language is selected, an associated style guide should

also be chosen. For example, if the E-Commerce Website uses Java, programmers and testers can utilize

the Google Java Style Guide (Google, n.d.) to ensure consistency and compliance.

3.3.3 Data Flow Analysis

Data flow analysis should be used for the purpose of revealing defects in code for the E-Commerce

Website. This type of analysis "checks the usage of every single variable" (Spillner, Linz, & Schaefer,

2014). This includes variables that are defined, referenced, and undefined. The data flow analysis will

E-Commerce Website Test Plan Page 25

be used to reveal data flow anomalies. “An anomaly is an inconsistency that can lead to failure but does

not necessarily do so. An anomaly may be flagged as a risk” (Spillner, Linz, & Schaefer, 2014).

3.3.4 Control Flow Analysis

Control flow analysis will also be used to find defects. Control flow utilizes graphs to represent a

sequence of statements to analyze program execution. These diagrams are used to visualize changes in

the execution of the program (the control flow) caused by logic such as conditionals and loops.

Examples of control flow graphs can be seen in Figure 7 below (GeeksForGeeks, n.d.). According to

Software testing foundations: A study guide for the certified tester exam (4th ed.) (2014), “Due to the

clarity of the control flow graph, the sequences through the program can easily be understood and

possible anomalies can be detected.” Identified anomalies may not cause the program to fail, but they

should be addressed to maintain compliance to conventions and standards.

Figure 7. Example Control Flow Graphs (GeeksForGeeks, n.d.)

E-Commerce Website Test Plan Page 26

3.4 Dynamic Testing Strategies

3.4.1 Black Box Testing

Black box testing includes a group of testing techniques that aim to verify that a test object meets its

specifications and that expected outputs result from a specified set of inputs. According to Software

testing foundations: A study guide for the certified tester exam (4th ed.) (2014), the goal of these

strategies is “the verification of the functionality of the test object. It is indisputable that the highest

priority is that the software work correctly. Thus, black box techniques should always be applied.”

Therefore, it is imperative that test strategies for the E-Commerce Website include black box

techniques. The following methods will be used for testing the E-Commerce Website.

3.4.2 Equivalence Class Partitioning

This approach helps developers and testers systematically generate test cases based on domains for

various inputs. “An equivalence class is a set of data values that the tester assumes are processed in the

same way by the test object” (Spillner, Linz, & Schaefer, 2014). In other words, this strategy involves

identifying the parameters that a function accepts, generating potential valid and invalid inputs for that

parameter, creating an equivalence class that represents a group of similar inputs, selecting a

representative input for each equivalence class, and then generating test cases that eliminate

redundancy as much as possible.

3.4.3 Boundary Value Analysis

Boundary value analysis will be used in conjunction with equivalence class partitioning in order to

generate test cases for the E-Commerce Website. This strategy focuses on testing inputs that lie on the

boundaries between equivalence classes. “Boundary value analysis delivers a very reasonable addition

to the test cases that have been identified by equivalence class partitioning. Faults often appear at the

E-Commerce Website Test Plan Page 27

boundaries of equivalence classes. This happens because boundaries are often not defined clearly or are

misunderstood” (Spillner, Linz, & Schaefer, 2014).

3.4.4. State Transition Testing

This testing method is beneficial in evaluating how a system reacts to transitions in state. For example,

the E-Commerce Website involves a number of objects. These objects change and react to user input.

For example, a user’s Cart (an object) begins in an empty state. When a user views an item and then

selects “Add to Cart”, the state of the object changes—it is no longer empty. This testing strategy will be

applied to see how events related to a customer searching, selecting, and purchasing an item trigger

changes in the state of different objects.

3.4.5 Use-Case-Based Testing

Use-case-based testing will be important in evaluating the functionality of the E-Commerce Website.

This strategy involves testing the execution of paths aligned with each of the use cases illustrated in the

use case diagram for the E-Commerce Website (in the design documents). For example, one of the test

cases describes how a customer needs to be able to narrow down their search by applying filters. This

means that at least one test case needs to be generated to evaluate whether or not the website

implements that functionality correctly, and whether or not the search results are refreshed when a

customer adjusts the filters.

3.4.6 White Box Testing

White box testing is more granular than black box testing and directly involves evaluating the source

code. As stated by Analysis of statement branch and loop coverage in software testing with genetic

algorithm (2017), “White box testing involves executing a program and seeing which parts of it are

executed.” It is important to include these methods in analysis of the E-Commerce website, since these

tests are designed to evaluate branching logic, conditionals, and loops. This ensures that all paths of

E-Commerce Website Test Plan Page 28

execution are evaluated in the test environment, so that the first time a line of code is being executed is

not in production. The following white box techniques will be used to test the E-Commerce Website.

3.4.7 Statement Testing

Statement testing refers to testing each statement within a test object. The goal is 100% execution of

the code, but that is not always possible due to time and budgetary constraints. Statement testing can

help identify dead statements (where code exists that cannot be reached by any test case). It is

important to track which lines of code have been executed to reduce redundancy and make testing

more efficient (Spillner, Linz, & Schaefer, 2014).

3.4.8 Decision/Branch Testing

Decision/branch testing focuses on executing decisions in the code, rather than individual statements.

According to Software testing foundations: A study guide for the certified tester exam (4th ed.) (2014),

“In contrast to statement coverage, branch coverage makes it possible to detect missing statements in

empty branches.” As a result of this, “Decision/branch coverage usually requires the execution of more

test cases than statement coverage" (Spillner, Linz, & Schaefer, 2014). This leads to more reliable code.

Examples of decisions include IF statements, case statements, and loops. Control flow graphs can also

be used in this type of testing to ensure that all test cases are considered.

3.4.9 Testing of Conditions

Condition testing evaluates more complex decisions influenced by multiple conditions in the code. This

technique is important so that the results of all complex decisions are considered. Spillner, Linz, &

Schaefer (2014) state, “Combinations of logical expressions are especially defect prone. Thus, a

comprehensive test is very important.”

E-Commerce Website Test Plan Page 29

3.4.10 Experience-Based Testing

Experience-based testing, also known as intuitive-based testing, will be used to supplement black box

and white box techniques in the testing of the E-Commerce Website. Intuitive-based tests leverage the

skills and experience of developers and testers to generate test cases that might otherwise be

overlooked in systematic testing. In this approach, “The test cases are based on where faults have

occurred in the past or the tester’s ideas of where faults might occur in the future” (Spillner, Linz, &

Schaefer, 2014).

4. Test Management Strategy

4.1 Test Teams

In order to achieve efficient development of the E-Commerce Website it is important to consider test

teams and an approach to each level of testing. If at all possible, developers on the team should not test

their own code. According to Software testing foundations: A study guide for the certified tester exam

(4th ed.) (2014), “because there is a tendency to be blind to our own errors, it is much more efficient to

let different people perform testing and development and to organize testing as independently as

possible from development.” For this reason, designated testers on the development team should

perform component testing. In addition, a designated testing team within the project should perform

integration testing. These testers may include individuals from the business or IT. System testing should

also be performed by a designated team that includes specialists: “Especially in system testing, it is often

necessary to extend the test team by adding IT specialists, at least temporarily, to perform work for the

test team” (Spillner, Linz, & Schaefer, 2014). This will allow the system to be viewed and tested from

multiple perspectives.

E-Commerce Website Test Plan Page 30

4.2 Test Roles

The following test roles should be assigned to individuals in order to conduct testing of the E-Commerce

Website: test manager, test designer, test automator, test administrator, and tester (Spillner, Linz, &

Schaefer, 2014). The test manager will require experience in software testing, quality management,

project management, and personnel management. The test designer should have a skillset that includes

test methods and specification, testing, and software engineering. They should also hold a degree in

Computer Science. The test automator will require experience in testing, programming, scripting, test

tools, and automation. The test administrator needs a skillset involving setting up and supporting test

environments, as well as system administration and networking. The tester should have experience

following procedures, executing tests, reporting failures, and using test objects and testing tools

(Spillner, Linz, & Schaefer, 2014).

4.3 Exit Criteria

Each test case should contain specific exit criteria, which guides testers in determining when a test is

considered to be complete. Exit criteria is important because “They prevent tests from ending too early,

for example, because of time pressure or because of resource shortages” (Spillner, Linz, & Schaefer,

2014). In other words, exit criteria will help determine when tests for the E-Commerce Website should

be started and stopped. By identifying these items up front, testers and developers can rely on criteria

to determine when to stop testing: “To make a right decision to stop testing is an arduous resolution,

the pre-defined exit criteria can help simplify this process. It is a very important step where all test

processes get stopped and this decision is either made by the tester or the whole team together”

(Nidagundi & Novickis, 2016). Having clear exit criteria allows testers to have increased confidence in

the software.

E-Commerce Website Test Plan Page 31

4.4 Test Estimated Effort

It is important to consider both the costs of testing, as well as the costs of undetected defects, when

planning software testing. It is the test manager’s responsibility to initiate test effort estimation during

the planning phase to ensure that resources are assigned and distributed properly. Estimating test

effort for the E-Commerce Website will be conducted by basing estimates on data from former or

similar projects, as this method provides the most reliable test effort estimates: “task-driven test effort

estimation tends to underestimate the testing effort. Estimating based on experience data of similar

projects or typical values usually leads to better results” (Spillner, Linz, & Schaefer, 2014).

4.5 Test and Risk

Risk-based prioritization will be implemented in order to ensure that the most significant defects within

the E-Commerce Website are revealed as early as possible. This will prevent critical defects from having

downstream affects while reducing the time and cost of handling critical defects that make it to

production. While test cases can be prioritized based on multiple factors, including frequency of

function use, visibility, priority of functional and non-functional requirements from the customer,

severity, risk, and complexity, prioritization by risk is one of the best methods for selecting test cases.

According to Software testing foundations: A study guide for the certified tester exam (4th ed.) (2014),

“Risk based prioritization of the tests ensures that risky product parts are tested more intensively and

earlier than parts with lower risk. Severe problems (causing much corrective work or serious delays) are

found as early as possible.”

 Risk is “the mathematical product of the loss or damage due to failure and the probability (or

frequency) of failure resulting in such damage” (Spillner, Linz, & Schaefer, 2014). In order to reduce risk,

it is important to implement risk management techniques. Risk management involves identifying,

prioritizing, and mitigating risks. Testing can serve as a risk mitigation technique because it “provides

E-Commerce Website Test Plan Page 32

information about existing problems and the success or failure of correction” (Spillner, Linz, & Schaefer,

2014). Risk-based testing can be used to generate test cases that address potential areas of risk.

4.6 Incident Reporting

Incident reporting will be used throughout the development and testing of the E-Commerce Website in

order to document and manage incidents. Every defect that is determined to be significant and

legitimate (not the result of a poorly designed test) should be documented. The template shown in

Figure 8 (Spillner, Linz, & Schaefer, 2014) below will be used to document incidents. This will allow the

communication of incidents to be consistent, and developers will be able to easily reproduce defects.

Homès (2012) stresses the importance of clearly communicating defects: “Determining the impact in an

understandable way for developers (data loss, functionality loss, software instability, etc.) and for

customers and the hierarchy (impacts in financial terms or in usability terms, noncompliance to

requirements, etc.) enables a quick recognition of the anomaly.”

 The incident report will contain the following information: the tested software, test

environment, tester’s name, the class that contains the defect, prioritization of the defect, and

information relevant to reproducing and locating the defect (Spillner, Linz, & Schaefer, 2014). Testers,

developers, customers and users can report incidents. When corrections are made, the incident report

should be updated in the database. This will help the project team track and manage incidents.

E-Commerce Website Test Plan Page 33

Figure 8. Incident Reporting Template (Spillner, Linz, & Schaefer, 2014)

4.7 Defect Classification

Defect classification will be implemented for prioritizing incidents related to the E-Commerce Website.

The severity level will reflect the level of impairment caused by the defect. The following 5 levels of

severity will be used: 1-Fatal, 2-Very Serious, 3-Serious, 4-Moderate, and 5-Mild. The criteria for these

levels can be seen in Figure 9 (Spillner, Linz, & Schaefer, 2014) below. Levels of priority will also be

implemented in order to identify how quickly a problem should be addressed. The following four levels

of priority will be used: 1-Immediate, 2-Next Release, 3-On Occasion, and 4-Open. The criteria assigned

to each of these priority levels can be seen in Figure 10 (Spillner, Linz, & Schaefer, 2014) below.

E-Commerce Website Test Plan Page 34

Figure 9. Severity Levels (Spillner, Linz, & Schaefer, 2014)

Figure 10. Priority Levels (Spillner, Linz, & Schaefer, 2014)

4.8 Configuration Management

Configuration management will be used throughout the development of the E-Commerce Website in

order to track the version history of the project, as well as to allow multiple developers to make

contributions without interfering with one another’s work. Poor configuration management can lead to

E-Commerce Website Test Plan Page 35

a number of avoidable problems such as developers overwriting one another’s code, the inability to

integrate components because of unknown versions, and difficulty testing because changes to a

component are untraceable or testers don’t know which test cases belong to which version of a test

object (Spillner, Linz, & Schaefer, 2014). These circumstances can be avoided by implementing version

management, configuration identification, incident and change status control, and configuration audits.

All of these activities can be achieved through the use of standard operating procedures and test

management tools: “Modern file version control systems, such as git, mercurial, or svn implement a

concept of revision or commit. This concept may be crucial to store program source code, as it allows

users to view previous versions of stored files” (Dmitriev, Valter, & Kontsov, 2020).

5. Test Tools

5.1 Introduction

Test tools can ease the burden of manual software testing. Because the E-Commerce Website is a new

build, and a fairly complex system, test tools should be acquired and utilized to increase test efficiency

and reliability, reduce manual testing, and achieve what some manual tests cannot, such as load and

performance testing (Spillner, Linz, & Schaefer, 2014). Before selecting test tools, a cost-benefit analysis

should be conducted. The phases of testing for the E-Commerce Website may involve tools for test

management and control, test specification, static testing, dynamic testing, and non-functional testing.

5.2 Test Management and Control Tools

Tools that support test management and control allow testers and project managers to document,

prioritize, list, and maintain test cases (Spillner, Linz, & Schaefer, 2014). A test management tool that

may be considered for development of the E-Commerce Website is Jira. Test management tools can be

used to ensure that there are test cases to address each software requirement. A test tool with this

functionality is considered a requirements management tool. Test execution tools are another form of

E-Commerce Website Test Plan Page 36

test management tool that execute test scripts automatically and document the results. Incident

management tools track software defects and their resolutions. Configuration management tools track

versions and builds that will be tested. Lastly, tool integration can be used to combine multiple test

management tools into one (Spillner, Linz, & Schaefer, 2014). A cost-benefit analysis specific to the E-

Commerce Website should be used to determine which tools will be the most beneficial to the project.

5.3 Test Specification Tools

Tools for the specification phase of testing should also be considered regarding the E-Commerce

Website. These tools help test designers generate test data. There are four types of test generators:

database-based test generators, code-based test generators, interface-based test generators, and

specification-based test generators. According to Software testing foundations: A study guide for the

certified tester exam (4th ed.) (2014), database-based test generators “process database schemas and

are able to produce test databases from these schemas.” These tools help generate test data by

filtering through databases. An example of such a tool is DatProf, which supports Windows operating

systems and generates synthetic data using most common database technologies (Software Testing

Help, 2020). Code-based test generators use the source code to generate test data. While these tools

can be helpful, they cannot detect faults caused by missing code. In addition, Spillner, Linz, & Schaefer

(2014) state, “The use of code as a test basis for testing the code itself is in general a very poor

foundation.” However, code-based test generators can be helpful for regression testing. Interface-

based test generators identify parameter domains, which can then be used for equivalence class

partitioning and boundary value analysis to generate test cases (Spillner, Linz, & Schaefer, 2014). They

are also helpful when testing API’s and GUI’s. Specification-based test generators synthesize test data

from formal specifications or models.

E-Commerce Website Test Plan Page 37

5.4 Static Testing Tools

Static testing tools should be applied directly to the source code of the E-Commerce Website. Because

they support the evaluation of source code, they can help identify defects early in the development

process, before code is even executed. Review tools are a form of static testing that serve like checklists

to help testers plan, execute, and evaluate code reviews (Spillner, Linz, & Schaefer, 2014). Static

analyzers can also be used to identify areas in the code that are complex, risky, inconsistent, defect-

prone, violate programming standards, or pose portability issues. These areas can then be refactored,

and or prioritized for further testing. Model checkers may also be considered in order to analyze the

UML models to check for “missing states, state transitions, and other inconsistencies in a model”

(Spillner, Linz, & Schaefer, 2014). An example of a static analysis tool is Polyspace. This tool, released in

2014 consists of two components: Polyspace Code Prover and Polyspace Bug Finder. “The former

identifies every code instruction by applying all possible values of variables, while the later is used to

perform static analysis” (Khalid, 2017).

5.5 Dynamic Testing Tools

Utilizing dynamic testing tools during development of the E-Commerce Website will help reduce the

mechanical work involved with manual test execution. These tools provide the test object with input

data, and record the output. Examples of dynamic testing tools are debuggers, test drivers and test

frameworks, simulators, test robots, comparators, dynamic analyzers, and tools for coverage analysis

(Spillner, Linz, & Schaefer, 2014). Debuggers can be found in popular text editors and IDE’s. They allow

testers and developers to execute a program one line at a time. A program can also be paused mid-

execution to observe or manipulate variables. Test drivers and test frameworks are often used for

component and integration tests, and are designed for specific programming languages and

environments (Spillner, Linz, & Schaefer, 2014). They provide control over the test object. Simulators

mirror the real system environment, but are used when the tests cannot be executed there. Test robots

E-Commerce Website Test Plan Page 38

log manual inputs such as keyboard strokes or mouse clicks, store them as a script, and then can execute

the script in order to replay that sequence of inputs in an automated fashion. These tools are especially

helpful for regression testing. Comparators identify deviations from expected results. Dynamic

analyzers evaluate memory usage and allocation, as well as identify “memory leaks, wrong pointer

allocation, or pointer arithmetic problems” (Spillner, Linz, & Schaefer, 2014). Finally, coverage analysis

tools track statement and branch coverage to ensure that as much code as possible is executed during

testing. An example of a dynamic analysis tool is VectorCast. “VectorCAST ICover is used to test code

coverage of source code through dynamic analysis” (Khalid, 2017).

5.6 Non-Functional Testing Tools

Non-functional testing tools should also be considered for assessing the quality attributes of the E-

Commerce Website. Often, these attributes can be difficult to evaluate using manual methods alone.

According to Software testing foundations: A study guide for the certified tester exam (4th ed.) (2014),

“Load test tools generate a synthetic load (i.e., parallel data-base queries, user transactions, or network

traffic.” This allows testers to determine how a system will behave under more realistic conditions.

Performance tests can also reveal the response time of a system. Load and performance tools are

especially helpful when a system expects to experience high traffic, or when it needs to handle large

numbers of parallel requests (Spillner, Linz, & Schaefer, 2014). They can also be helpful in identifying

bottlenecks within the system. An example of a tool used for performance and load testing is Apache

JMeter (Khandelwal, 2019). Aside from performance and load testing tools, other non-functional testing

tools include those for testing security and those for assessing data quality. It is important to identify

security vulnerabilities early on in development. As Benchmark Requirements for Assessing Software

Security Vulnerability Testing Tools (2018) states, “Developers cannot afford to believe that their

security requirements during development are perfect and impenetrable, no matter how thorough their

precautions might be.” In addition to testing for security vulnerabilities, data quality assessment tools

E-Commerce Website Test Plan Page 39

can ensure that data both before and after migration or conversion is correct and complete. Through

the use of these testing tools, developers, testers, and project managers can produce an E-Commerce

Website that is robust and reliable.

E-Commerce Website Test Plan Page 40

6. Resources

ADA. (2007). Website Accessibility Under Title II of the ADA. Retrieved April 5, 2020 from

 https://www.ada.gov/pcatoolkit/chap5toolkit.htm

Ali, S., Imran, M., Hafeez, Y., Abbasi, T. R., Haider, W., & Salam, A. (2018). Improving Component Based

 Software Integration Testing Using Data Mining Technique. 2018 12th International Conference

 on Mathematics, Actuarial Science, Computer Science and Statistics (MACS), Mathematics,

 Actuarial Science, Computer Science and Statistics (MACS), 2018 12th International Conference

 On, 1–6. https://doi-org.proxy- library.ashford.edu/10.1109/MACS.2018.8628368

Bahaweres, R. B., Zawawi, K., Khairani, D., & Hakiem, N. (2017). Analysis of statement branch and loop

 coverage in software testing with genetic algorithm. 2017 4th International Conference on

 Electrical Engineering, Computer Science and Informatics (EECSI), Electrical Engineering,

 Computer Science and Informatics (EECSI), 2017 4th International Conference On, 1–6.

 https://doi-org.proxy-library.ashford.edu/10.1109/EECSI.2017.8239088

Carnegie Mellon Software Engineering Institute. (1991). The Software Technical Review Process.

 Retrieved April 18, 2020 from https://apps.dtic.mil/dtic/tr/fulltext/u2/a236122.pdf

Dmitriev, S. O., Valter, D. A., & Kontsov, A. M. (2020). System for Efficient Storage and Version Control of

 Arbitrary File Collections. 2020 IEEE Conference of Russian Young Researchers in Electrical and

 Electronic Engineering (EIConRus), Russian Young Researchers in Electrical and Electronic

 Engineering (EIConRus), 2020 IEEE Conference Of, 295–298. https://doi-org.proxy-

 library.ashford.edu/10.1109/EIConRus49466.2020.9038922

Eriksson, U. (2012, April 5). Functional vs non functional requirements ReQtest.

 https://reqtest.com/requirements-blog/functional-vs-non-functional-requirements/

Font Awesome. (n.d.) Font Awesome Icons. Retrieved April 6, 2020 from

 https://fontawesome.com/icons?d=gallery

E-Commerce Website Test Plan Page 41

Fox, C. (1999). Java Inspection Checklist. Retrieved April 18, 2020 from

 http://www.cs.toronto.edu/~sme/CSC444F/handouts/java_checklist.pdf

GeeksForGeeks.com. (n.d.). Software Engineering: Control Flow Graph (CFG). Retrieved April 18, 2020

 from https://www.geeksforgeeks.org/software-engineering-control-flow-graph-cfg/

GeeksForGeeks.com. (n.d.). Software Engineering: Integration Testing. Retrieved April 11, 2020 from

 https://www.geeksforgeeks.org/software-engineering-integration-testing/

Google. (n.d.). Google Java Style Guide. Retrieved April 18, 2020 from

 https://google.github.io/styleguide/javaguide.html

Greene, V. (2018, April 8). The top 5 functional requirements for eCommerce websites Acro Blog.

 https://blog.acromedia.com/the-top-5-functional-requirements-for-ecommerce-websites

Homès, B. (2012). Fundamentals of Software Testing, John Wiley & Sons, Incorporated. ProQuest

 Ebook Central, http://ebookcentral.proquest.com/lib/ashford-

 ebooks/detail.action?docID=1120766.

 Created from ashford-ebooks on 2020-04-25 14:33:08.

Khalid, R. (2017). Towards an automated tool for software testing and analysis. 2017 14th International

 Bhurban Conference on Applied Sciences and Technology (IBCAST), Applied Sciences and

 Technology (IBCAST), 2017 14th International Bhurban Conference On, 461–465. https://doi-

 org.proxy-library.ashford.edu/10.1109/IBCAST.2017.7868094

Khandelwal, A. (2019). Top 10 Non -Functional Testing Tools | Pros and Cons. Retrieved May 5, 2020

 from https://testinggenez.com/non-functional-testing-tools/

Kumar, J. (2015). The e-commerce problem statement. In Apache Solr patterns. Packt Publishing.

 https://bit.ly/2Rn8inE

M. Parizi, R., Qian, K., Shahriar, H., Wu, F., & Tao, L. (2018). Benchmark Requirements for Assessing

 Software Security Vulnerability Testing Tools. 2018 IEEE 42nd Annual Computer Software and

E-Commerce Website Test Plan Page 42

 Applications Conference (COMPSAC), Computer Software and Applications Conference

 (COMPSAC), 2018 IEEE 42nd Annual, COMPSAC, 01, 825–826. https://doi-org.proxy-

 library.ashford.edu/10.1109/COMPSAC.2018.00139

Mohamed Suffian, M. D., Fairul Rizal, F., Loo, F. A., Aman, N. F., & Bajuri, N. (2016). Software capability

 rating using system testing scores. 2016 IEEE Conference on Open Systems (ICOS), Open Systems

 (ICOS), 2016 IEEE Conference On, 105–110. https://doi-org.proxy-

 library.ashford.edu/10.1109/ICOS.2016.7881997

Nidagundi, P., & Novickis, L. (2016). Introduction to Lean Canvas Transformation Models and Metrics in

 Software Testing. Applied Computer Systems, 19(1), 30.

Software Testing Help. (2020). Top 10 Best Test Data Generation Tools in 2020. Retrieved May 5, 2020

 from https://www.softwaretestinghelp.com/test-data-generation-tools/.

Spillner, A., Linz, T., & Schaefer, H. (2014). Software testing foundations: A study guide for the

 certified tester exam (4th ed.). Rocky Nook.

Wiegers, K. E. (1999). Software requirements specifications for <project> [Template].

 https://web.cs.dal.ca/~hawkey/3130/srs_template-ieee.doc

E-Commerce Website Test Plan Page 43

Appendix A: Glossary

ADA- Americans with Disabilities Act of 1990

HTTP- hypertext transfer protocol

PII- Personally Identifiable Information

SRS- Software Requirements Specification

TCP- transmission control protocol

UI- User Interface

UX- User Experience

