Final Assignment—E-Commerce Website Test Plan
Alicia Piavis
CST313: Software Testing
Robert Key
05/02/2020

E-Commerce Website Test Plan Page ii

Table of Contents

Table Of CONLENTS ...ccuieeeiie et rreeereee e rres e reasesensserensesseasesensssnensessnssssensesennsasennns i

3TV T 0 4 TN 3 o T i

1. Software Requirements SPeCifiCationccccciieeiereeirieeiereeniereeieteeneeeeneerennereesserensesesasesennes 3
00 R 0 e T 1 o1 o o SR 3
1.2 OVErall DESCIIPLION ciiiiiiiiiiieiiiee ettt e e e e e s st e e e e sba e e e e seabaeeessarneeeesnnneeens 4
1.3 External Interface ReQUIrEMENTScciiiiiiiii it e e e saee s 5
1.4 SYSTOM FOATUIES .. e e e e e e e e e s e e e e e e e e e e e e e e e e e e ns 6

1.5 Other Non-Functional Requirements

2. Testing Levels and UML MOdElSccceiiiieneiiiiimnniiiiiiniiiieieems. 14
D28 R] o To [V 4 o Yo FPU SR UPPRURTPPP 14
W Oo 10 0] o ToT g 1= o} dl =TSy AT o = 2PN 15
B I (e) (=Y <= Lo g T =Ty A ¥ = PPN 16
VL €= o 0 T =T o V=N 16
P B Aol =T o] - | Lol TP PR PR PSP POPRURTRRUPRRORRRRRRRRN 16
2.6 UML IMOUEIS ... iteeiieiiieeeciee ettt ettt e et e e s e e e e e e s eaba e e e s satteeeessnsaeeessnnseeeessnssenaeanns 17

3. Review and Testing Strategies....cccccicciiiiiiiiieiiiiiiiicieienieieniereeiereniesseesensserenssessnssssnnne 20
3.1 Overview Of ReVIEW STrategIeSciiiiiiiieiiciiie ettt e s e e s saae e e e e 20
3.2 Recommended REVIEW Stratei€scuiivcuiieiieiiiieieiiiiee e ecrtee et e e esrae e e e s saae e e s saaeeeeenns 23
3.3 Static TeStiNg StrateZIeS . uuuuuiiiiieiiiiiiiiiitiieieteiet ittt aaereraaeaebabaaesabasebasesssesssnsnsnsnsnnes 24
R DNV o T o ol =T A Yo - L =Y <= PN 26

4., Test Management Strategycciciieiieiiiiiiiiiiiiiiiiiniicciniiis s rsrsseessessastescsessasrassasssnns 29
L R T A =Y 0 3PP ORPRRRRRRN 29
B.2 TEST ROIES ..eeieeeeee et e e st e e sttt e s sttt e e e s eab b e e e s eabe e e e e braeens 30
I o (O 4 (=T - DO TP PP PPPUPPPPTOPPI 30
4.4 Test EStimated EFfOrt ..o s 31
T =T - Lo I 2 PP 31
I Lo Yoo [T oY A 2U=T o Yo o i T = SRR 32
A 0 1Y Yot a @ F- T} o= Y o [PP 33
4.8 Configuration ManagemMENTt......cceii i e e e e e e e e e e s e eabr e e e e e e e e s esnannreaees 34

TR =T e o 35
T8 A] o To [4 oo AP PSPPSR 35
5.2 Test Management and Control TOOISccooiieiiiiiieiie e e 35
5.3 Test SPecification TOOISceeiiii i e e e e e aee e e e eas 36
R R =Y ol =1 T V= e Yo | L3R 37
5.5 DYNAMIC TESTING TOOIS ..uuurriiiiieeiieiicteeeee ettt e e eeserrree e e e e e e ertrareeeeeeeessnanrsaneaeeens 37
5.6 Non-Functional TeStING TOOIS ...cccouiiriieeiee ettt et e e e e raaeee e 38

ST =T o U ol 40

APPENAIX A: GlOSSANY...cieuiiiieiiieniiieererineterenierenerensseressersnssersnsssssnssssnsssssnsssssssessnsssssnssssnnnans 43

Revision History

Name

Date

Reason For Changes

Version

E-Commerce Website Test Plan Page 3

1. Software Requirements Specification

1.1 Introduction

1.1.1 Purpose

This software requirements specification (SRS) outlines the requirements for the e-commerce website
software build. The purpose of the e-commerce website is to allow customers a way to quickly find and
purchase what they desire from a range of options. This document refers to version 1.0 of the e-
commerce website. The scope of this SRS encompasses the entirety of the initial build of the e-
commerce website, including the basic features described in section 4, as well as other non-functional

requirements described in section 5.

1.1.2 Document Conventions
This document is broken into 5 sections with headers for Introduction, Overall Description, External
Interface Requirements, System Features, and Other Non-Functional Requirements. Sub-headers

provide detail regarding the specifics of those sections.

1.1.3 Intended Audience and Reading Suggestions

This SRS is intended for UI/UX designers, software designers, architects, developers, project managers,
testers, and other stakeholders involved in the execution of this project. It is suggested that all audience
members read the document from start to finish in order to gain a thorough understanding of the

purpose and requirements of the e-commerce website.

1.1.4 Product Scope
The goal of the e-commerce website is to allow a user to find what they are looking for quickly and
easily. The website will allow a user to search for an item, select a search suggestion, narrow down a

search by selecting different filters for an item, view details about an item, add an item to a cart,

E-Commerce Website Test Plan Page 4

continue shopping, and then checkout when they are ready. The development of this e-commerce

website aligns with the business objective to increase growth and profitability.

1.2 Overall Description

1.2.1 Product Perspective

The build for the e-commerce website is a new, self-contained product.

1.2.2 Product Functions

A user should be able to search for an item, and narrow down their search by selecting different filters
for an item, they should be able to view details about an item, add an item to a cart, continue shopping,
and then checkout when they are ready. In addition, there should be different filters for different types
of items. In other words, items should be categorized into groupings of similar items. Furthermore,

there should be search suggestions when a user starts typing, so that the correct category of item can be

retrieved.
User types into User selects User filters - User reads detail = User adds item to | g User checks
search box search suggestion options about option cart out

1.2.3 User Classes and Characteristics

User classes for the e-commerce website include customers, vendors, and administrators. The customer
class will need to be able to search select, and purchase items. The vendor class will need to be able to
add new items for availability, and update their current inventory of listings. Administrators will need to
be able to access all functionalities, including adding, updating, and deleting item listings, as well as
assisting users in logging into their accounts and resetting their login information. Administrators
should also be able to look up a confirmed order by an order ID number. The primary user class for the

e-commerce website is the customer user class.

E-Commerce Website Test Plan Page 5

1.2.4 Operating Environment

The e-commerce website needs to have cross-platform functionality, as well as be mobile responsive.
The website should function on all major web browsers, including Chrome, Internet Explorer, Edge, Bing,
Yahoo, and Safari. In addition, it should function properly on both Mac and Windows operating systems,

as well as iOS and Android.

1.2.5 Design and Implementation Constraints

The e-commerce website needs to be built within 6 months, and must utilize a relational database. In
addition, all passwords for user accounts must use encryption. In order to comply with company policy,
the website must abide by ADA web accessibility guidelines (ADA, 2007). Furthermore, the system will
be maintained by the customer, so the design and build should support modifiability, maintainability,
and testability.

1.2.6 User Documentation

In addition to the requested functionalities of the E-Commerce Website, the site will also include
documentation aimed at users who need assistance troubleshooting or guidance in creating a user
account. Furthermore, the site will have a chat bot, which allows users to request assistance when

needed.
1.2.7 Assumptions and Dependencies
Constraints for the project include a budget of $50,000, a timeline of 6 months, and a project team of no

more than eight, which includes designers, architects, database administrators, developers, testers, and

project managers.
1.3 External Interface Requirements
1.3.1 User Interfaces

Each page of the E-Commerce Website should have the same header, footer, and navbar for

consistency. lcons should all be selected from Font Awesome. Each page should contain a back arrow in

E-Commerce Website Test Plan Page 6

the same location that allows a user to return to the previous page. All images should include alt tags,
and users should be able to tab through a page. In addition, colors should be selected for usability and
visual appeal, and fonts should be easily readable. Ads should not draw attention away from the main
content of the page, and general layout should be consistent across pages. The home button should be
clearly visible on every page. Furthermore, forms should provide users with clear feedback instructing

them how to correct errors when they are made.

1.3.2 Hardware Interfaces

The E-Commerce Website should be accessible from all major devices including iOS and Android phones,
iPads and other tablets, and both Mac and Microsoft products. The site will use HTTP to make requests
and TCP to transfer resources from the web server to the client. The website should also support screen

readers.

1.3.3 Software Interfaces

The website should be compatible with iOS, Android, Mac, and Windows operating systems. The build
should also include an API that talks to the relational database in order to store and retrieve customer,
product, and transactional data. In addition, the site should allow single sign on with options to sign in
using Google or Facebook accounts.

1.3.4 Communications Interfaces

Users should be able to receive email notifications upon confirmation of an order, as well as optional
newsletters and deal notifications related to their preferences and order history. In additional all

personally identifiable information (PIl) should be secure, and all passwords should be encrypted.
1.4 System Features

1.4.1 New User Can Create an Account

1.4.1.1 Description and Priority

E-Commerce Website Test Plan Page 7

14.1.2

1413

Priority: High

Description: User should be able to create an account. This encompasses part of the
basic functionality of the website. A user cannot make a purchase without creating an
account.

Benefit: 9

Stimulus/Response Sequences

User gets prompted on the home page to log in or create an account

User clicks on register

User enters form data to create account

User clicks submit

User receives positive confirmation that account has been created or clear instructions

regarding how to correct their input

Functional Requirements

REQ-1: Website should present user with two buttons on home page (login and
register)

REQ-2: Website should present registration form when user clicks on “register”
REQ-3: Data from form is validated, sanitized, processed, and sent to the database
when a user hits “submit”

REQ-4: Website presents user with informative messages if input does not meet
requirements

REQ-5: Website provides user with success message when account has been

successfully created

E-Commerce Website Test Plan Page 8

1.4.2 Returning User Can Login

14.21

1.4.2.2

14.23

Description and Priority

Priority: High
Description: Returning user should be able to login. This encompasses part of the basic
functionality of the website. A user cannot make a purchase without logging in.

Benefit: 9

Stimulus/Response Sequences

User gets prompted on the home page to log in or create an account

User clicks on login

User enters form data to login

User clicks submit

User receives positive confirmation that they have been logged in or clear instructions

regarding how to correct their input

Functional Requirements

REQ-1: Website should present user with two buttons on home page (login and
register)

REQ-2: Website should present login form when user clicks on “login”

REQ-3: Data from form is validated, sanitized, processed, and sent to the database
when a user hits “submit”

REQ-4: Website presents user with informative messages if input does not meet
requirements

REQ-5: User credentials are verified against user information stored in the database

E-Commerce Website Test Plan Page 9

e REQ-6: Website provides user with success message when account has been
successfully created
1.4.3 User Can Search For An Item

1.4.3.1 Description and Priority

e Priority: High

e Description: User should be able to search for an item. This encompasses part of the
basic functionality of the website. A user cannot find an item without being able to
search for it.

e Benefit: 8

1.4.3.2 Stimulus/Response Sequences

e User types into the search bar

e User is provided with search suggestions

e User selects a search suggestion

e User is presented with a list of search results

e User selects filters to narrow search results

1.4.3.3 Functional Requirements

e REQ-1: Website should have a search bar

e REQ-2: Website should dynamically present user with search suggestions

e REQ-3: Website should return search results when user selects suggestion

e REQ-4: Website should dynamically generate filters depending on the category that the
item falls into

e REQ-5: Website should update search results when filters are selected

E-Commerce Website Test Plan Page 10

1.4.4 User Can View Item Details

1.4.4.1 Description and Priority

e Priority: High
e Description: User should be able to view item details. A user will be hesitant to make a
purchase without having the ability to view item details.

e Benefit: 7

1.4.4.2 Stimulus/Response Sequences

e User clicks on an item link from the search results list

e User views item details

1.4.4.3 Functional Requirements

e REQ-1: Search results list has links for each item
e REQ-2: When linkis clicked, user is redirected to page that presents item details

1.4.5 User Can Add Item to Cart

1.4.5.1 Description and Priority

e Priority: High

e Description: User should be able to add an item to their virtual cart. This encompasses
part of the basic functionality of the website. A user cannot make a purchase without
first adding an item to the cart.

e Benefit: 8

1.4.5.2 Stimulus/Response Sequences

e User clicks on button to add item to cart

e User is presented with option to check out or continue shopping

E-Commerce Website Test Plan Page 11

e [f user selects “continue shopping”, they are redirected to the search page

e If user selects “checkout”, they are redirected to the checkout page

1.4.5.3 Functional Requirements

e REQ-1: Item detail page should have “add to cart” button

e REQ-2: Website should update cart icon with correct number of items when a user adds
an item to their cart

e REQ-3: Website should present user with an option to “continue shopping” or
“checkout”

e REQ-4: If user selects “continue shopping”, website redirects them to the search page

e REQ-5: If user selects “checkout”, website redirects them to the checkout page

1.4.6 User Can View Their Cart

1.4.6.1 Description and Priority
e Priority: Medium
e Description: User should be able to view their cart. Most users want to be able to view

their cart before committing to a purchase.

e Benefit: 7

1.4.6.2 Stimulus/Response Sequences

e User clicks on the cart icon at the top right of the page
e User views a list of their cart items

e User can edit or delete cart items

1.4.6.3 Functional Requirements

E-Commerce Website Test Plan Page 12

REQ-1: Carticon at top right of the page should be a link that redirects the user to the

cart view

e REQ-2: The cartview should present the user with a list of the items they added,
including a short description of the item, the quantity, and the price

e REQ-3: The cartview should show the user’s projected total

e REQ-4: Website should allow a user to delete items from the cart or update the
quantity

e REQ-5: Website will refresh cart view after a user updates quantities or deletes items

e REQ-6: Cartview has a “checkout” button

1.4.7 User Can Checkout

1.4.7.1 Description and Priority

e Priority: High

e Description: User should be able to checkout. This encompasses part of the basic
functionality of the website. A user cannot make a purchase without checking out and
initiating a transaction.

e Benefit: 9

1.4.7.2 Stimulus/Response Sequences

e User clicks on the cart icon

e User clicks on “checkout” button

e User is presented with checkout form
e User enters form data

e User clicks submit

E-Commerce Website Test Plan Page 13

e User receives positive confirmation that order has been placed or clear instructions

regarding how to correct their input
1.4.7.3 Functional Requirements

e REQ-1: Website should have “checkout” button on cart view page

e REQ-2: Website should redirect user to checkout page when button is clicked

e REQ-3: Website should present checkout form

e REQ-4: Datafrom form is validated, sanitized, processed, and sent to the database
when a user hits “submit”

e REQ-5: Website presents user with informative messages if input does not meet
requirements

e REQ-6: Website provides user with success message when order has been processed

1.5 Other Nonfunctional Requirements

1.5.1 Performance Requirements

New users should be able to create an account in less than 60 seconds. When a user searches for an
item, they should receive a list of search results in less than 3 seconds. Once a user hits the “checkout”
button, they should be able to complete the checkout form and receive a confirmation message in

under 2 minutes. Speed is of utmost importance, as delays may cause a poor user experience and may

deter users from returning to the site in the future.

1.5.2 Safety Requirements
Before a user confirms an order, the website needs to confirm that the user is over age 14. All Pll should
be protected, and passwords should be encrypted. In addition, sessions should timeout after 5 minutes

without activity, unless the user confirms that they want to continue the session.

E-Commerce Website Test Plan Page 14

1.5.3 Security Requirements
All Pl should be protected and secure. Credentials should be verified before a user is given access to
account information. In addition, passwords should be encrypted. Credit card information should not

be stored, and transactions should be processed securely.

1.5.4 Software Quality Attributes

The E-Commerce Website should follow web accessibility guidelines outlined by ADA (n.d.). In addition,
the site should be easy to use and navigate. The website should be reliable, as interruptions in service
may deter users from returning. The site should be scalable to accommodate for business growth and
an increasing userbase. It is important that the site be modifiable, to allow for the addition of new
features, and the product should be maintainable and testable, as maintenance will be the responsibility

of the customer.

1.5.5 Business Rules

Users should not be allowed to add items to a cart, checkout, or view their account information unless
they are logged in. Administrators should have the ability to assist users in resetting credentials. They
should also be able to search for order details using a reference number for administrative purposes.
Finally, administrators should be able to retrieve a list of all orders, past and present, for reporting

purposes.

2. Testing Levels and UML Models

2.1 Introduction

It is imperative to test software throughout the development lifecycle in order to ensure a quality
product. When performed effectively, testing can save costs, reduce development time, improve
maintainability, improve code quality, identify and correct faults early in the process, increase

robustness, and ensure that the customer is receiving a quality product that meets their needs and

E-Commerce Website Test Plan Page 15

desires. The four levels of testing are component testing, integration testing, system testing, and
acceptance testing (Spillner, Linz, & Schaefer, 2014). Component testing breaks software down into
functional units, and tests whether or not these units meet the required specifications. Integration
testing occurs when groups of related components are tested together to identify faults in the interfaces
and interactions between components (GeeksForGeeks, n.d.). System testing “specifically focuses on
testing the functional and non-functional aspects of the software in more comprehensive manner
including security, usability, performance and compatibility.” (Suffian et.al., 2016). Acceptance testing

ensures that the software meets the customer’s needs, and works in a production-level environment.

2.2 Component Testing

In regards to the E-Commerce Website, component testing will occur for each of the different
functionalities illustrated in the use case diagram in Figure 1. For example, the software will have
components that carry out each of the different functions: populating search suggestions when a
customer starts typing into the search bar, dynamically generating filters once a user selects a search
suggestion, displaying the search results as a list, showing item details when a user clicks on a link from
the list, allowing a user to add an item to their cart, displaying the cart when a user wants to view the
cart, carrying out a transaction when a user needs to checkout, and displaying a confirmation page.
There will also be components that handle functionalities linked to other user groups, such as
administrators and vendors. Components that might be used for administrators include those that
allow an administrator to create a report, pull a report, delete a report, and update a report. There will
also be components that allow vendors to add new items to the E-Commerce Website, update item
details, and be notified when inventory is low. Components will also include the classes shown in Figure
3. These classes include E-Commerce System Manager, User, Customer, Vendor, Administrator, Report,
Item, Cart Item, Cart, Delivery Method, and Invoice. All of these components should be thoroughly

tested to ensure that they address the use cases in Figure 1, the activity diagram in Figure 2, the class

E-Commerce Website Test Plan Page 16

diagram in Figure 3, and the sequence diagram in Figure 4. Component-level testing will also ensure

that the code is maintainable, effective, robust, performant, and lacks faults.

2.3 Integration Testing

The E-Commerce System will also need to go through integration testing. Integration testing allows
testers and developers the ability to “discover faults and bugs in the interaction between integrated
components” (Ali et.al., 2018). Once all of the components mentioned above are thoroughly tested on
their own, test cases will be made to evaluate the collaboration of components. For example, Figure 4
illustrates the classes that are necessary in a sequence of events that allow a customer to place an
order. While each of these classes might have passed testing at the component level, the real test is
whether or not the control flow and data flow is successful across the interfaces and interactions

between com ponents.

2.4 System Testing

After integration tests are complete, the E-Commerce Website will need to go through a series of
system tests, which assess whether or not the website as a whole meets functional and non-functional
requirements. For example, does the website possess all of the functionalities shown in the activity
diagram? Is the E-Commerce website fast, reliable, available, secure, and maintainable? The testers
and developers at this point need to view the system from a user perspective, and test the system in an

environment that is as close to production-level as possible.

2.5 Acceptance Testing

Finally, the E-Commerce Website will go through acceptance testing. This process will involve
customers to ensure that the system provides them with all of the functionality they need to quickly
search for and purchase items. Administrators will need to provide feedback regarding whether or not
they can quickly and easily access reports, and vendors will need to determine if they can adequately

use the website to sell new products, and view and update inventories. Acceptance testing will take

E-Commerce Website Test Plan Page 17

place across different operating systems and devices to ensure that all users will have a positive user
experience. Performing the four levels of testing (component, integration, system, and acceptance) will

support the development team in delivering a high-quality product as efficiently and quickly as possible.

2.6 UML Models

Figure 1. Use Case Diagram for E-Commerce Website

https://drive.google.com/file/d/1LfmawHux6gAJ0gLD6yraIynDRdeX_6Q_/view?usp=sharing

E-Commerce Website Test Plan Page 18

= WML Activity Diagram
= Guciomer = E-Commarne Bystam

Filter apticns

Retwrn s=arch
results

Select item & read
item details

[wes]

Lagin/Aegister | ———

P — - Fher N Query OroerfDelivery
| Select Shipping Methoo Y ot

Figure 2. Activity Diagram for E-Commerce Website

https://drive.google.com/file/d/1sgkC7xIdKD98rcpkB9fqZmNoRWmaVewu/view?usp=sharing

E-Commerce Website Test Plan Page 19

Gl E-Commarce Systemn Manager

+ getListOfP roducts()

+ displaySearchResultsiresulisObj)
+ petltemilemid)

+ filtar PraductsfillerType)

= User

i
User Mame: siring
- User Passiord: string
User Type: string
= Cart ltzm User Emasi: sting
First Mame: string

Cart Item 1D: int 1 Last Name: siring
liem Quantity: inl o p— - Gender: sging
liem Tatal: int Date of Birth: date

Address: siring
Phone: string

+ gatCartlieminiofcartiemid
T y v Actve: baglean

+ updateQuantity(carthemid, quantity)
+ getlemTolaicartiemid, quanlity)

4 crealeAccount])

a.s 4+ verifyCredentials(userdD, userPassward)
+ gellserinfofuserld)

4 updatellsgrinfofusard, vpdatelnfoOti)

i [

L] Can

Cart 10 int I']

Cart Contenls: aray

Total Cost: int] Cuslomer B endor = Addrministraoe
. - Customner |0 inl Vendor 10: int Acministratar 10 inl
: ﬁfgﬁr&iﬁﬂ:,} Shipping Address: siring Vendor Hame: siring Start Date: date
+ deleleCartliem| i‘nmJIn' Biling Address: siring Products: array End Diade: date
X :"l:ul::lgC‘r‘Tnﬁkc.:r;.ru Saved Payment Methods: arrey Depariment. sting
- i P i = Last Login: strin
Fuichsse Histony- amay + getProductlist{vendord) i 3
+ addNew Produclinew® rod Ot
+ gelPurchaseHisiony[cusiomerld) + L-pd:lePrnnu:o_cupn.:bePru:Dth - gndDnp::rlrnent|.:dmhistr.:|.qud_‘:)
+ gelPaymentiethods{customerld) + :n{chF\-un._u.-:u_-.nm Id} L - ElhI:-E mLDluy_n'|r|.'ntLl_cr_gtlLf_::nTmnlsuulullr.
1 L + sellitemOnlineyilemOhbj) + geila=tLogn(adminisiralord
+ fulfillOrdeniorderObj)
L Drefivery Method 1
Dielivery 1D int
Caart IDc ind

Expedite Delivery: booksan
Shipaing Cost: int

+ getDalivery Methadinfoldeliveryldy
+ updateDeliveryMethadiupdate DeliveryhethodObj)

lem 1

Heerm 13 it Repart

liem Name: sting
4 |- Niem Description: string
List of Vendors: array

Report D int
Report Name: string

; liem Filters: array e =
Ouanlity Available: abj
= Irnvoice Price: inl
. 4+ crealzRegar()
Irvuc!: 1D: imt 35z b 4+ pullReporjreportid)
Tetad: i + gelhemAvaikabiltylilemid) + deleteReportirapartid]
Invoice lms: armay + uptaekeminfolupdateliemOt) + updabReparirepartid)
Invoice Customer: int + gelistONerdars(iftemid) L Pl

+ addlliemToCart{itemid}
+ deleteliemPFromGCart{iemld)

+ generatelnvoicefinvoiceld)
+ updateinvoice] updatelmaiceObj)

Figure 3. Class Diagram for E-Commerce Website

https://drive.google.com/file/d/1L3Sbp-6CODD9fe-_KKhunovSNKHLSBog/view?usp=sharing

E-Commerce Website Test Plan

Page 20

[:Customer] [:Item] [:CartItem] [:Cart

] [:DeliveryMethod] [Invoice] [:Transaction]

loop

select

create

addItem

calcTotal

checkout M

select

calcPrice J

generate

displayConfirmation

confirmOrder

sendEmailConf

Figure 4. Sequence Diagram for E-Commerce Website

3. Review and Testing Strategies

3.1 Overview of Review Strategies

3.1.1 Walkthrough

A walkthrough is an informal review method used to find “defects, ambiguities, and problems in written

documents” (Spillner, Linz, & Schaefer, 2014). The author of the code presents to an audience with the

goal of education. This strategy involves a meeting, but there is no time limit, and little preparation is

involved. Often, the meeting includes walk throughs of different use cases, with the reviewers asking

spontaneous questions. Because the review is informal and utilizes spontaneous questions, no template

is necessary for documentation. Walk throughs occur in small group settings and require few resources.

https://drive.google.com/file/d/1UYfWci_rFd47sSnMzQsicg7daftKP6ij/view?usp=sharing

E-Commerce Website Test Plan Page 21

According to Software testing foundations: A study guide for the certified tester exam (4th ed.) (2014),
“The main objectives of a walkthrough are mutual learning, development of an understanding of the

review object, and error detection.”

3.1.2 Inspection

Inspections are very formal. They involve clearly defined roles for individuals, rules, protocols, and
checklists (Spillner, Linz, & Schaefer, 2014). The planning phase for inspections revolves around defining
objectives. A moderator facilitates the meeting and follows a clear agenda. The goals of an inspection
include “finding unclear items and possible defects, measuring review object quality, and improving the
quality of the inspection process and the development process” (Spillner, Linz, & Schaefer, 2014). This
strategy involves more preparation, and aims to improve the overall development process, in addition
to simply reviewing the software for defects (Spillner, Linz, & Schaefer, 2014). A sample inspection

template can be seen in Figure 5 (Fox, 1999).

Java Inspection Checklist

Copyright © 1999 by Christopher Fox. Used with permission.

1. Variable, Attribute, and Constant Declaration Defects (VC)

Are descriptive variable and constant names used in accord with naming conventions?
Are there variables or attributes with confusingly similar names?

Is every variable and attribute correctly typed?

Is every variable and attribute properly initialized?

Could any non-local variables be made local?

Are all for-loop control variables declared in the loop header?

Are there literal constants that should be named constants?

Are there variables or attributes that should be constants?

Are there attributes that should be local variables?

Do all attributes have appropriate access modifiers (private, protected, public)?
Are there static attributes that should be non-static or vice-versa?

ooooooooooo

2. Method Definition Defects (FD)

O Are descriptive method names used in accord with naming conventions?
O Is every method parameter value checked before being used?

Q For every method: Does it return the correct value at every method retum point?
O Do all methods have appropriate access modifiers (private, protected, public)?
O Are there static methods that should be non-static or vice-versa?

3.

Class Definition Defects (CD)

O Does cach class have appropriate constructors and destructors?
O Do any subclasses have comman members that should be in the superclass?
O Can the class inheritance hierarchy be simplified?

4. Data Reference Defects (DR)

O For every amay reference: Is each subscript value within the defined bounds?
O Forevery object or array reference: Is the value certain o be non-null?

5. Computation/Numeric Defects (CN)

O Are there any computations with mixed data types?

O Is overflow or underflow possible during a computation?

QO For each expressions with more than one operator: Are the assumptions about order of
evaluation and precedence correct’

O Are parentheses used to avoid ambiguity?

6. Comparison/Relational Defects (CR)

For every boolean test: Is the correct condition checked?

Are the comparison operators correct

Has each boolean expression been simplified by driving negations inward?
Is each boolean expression correct?

Are there improper and unnoticed side-effects of a comparison?

Has an "&" inadvertently been interchanged with a "&&" ora”|" for a "|"?

oooooo

Java Inspection Checkiist, Page 1

7. Control Flow Defects (CF)

O For each loop: Is the best choice of looping constructs used?
O Will all loops terminate?
O When there are multiple exits from a loop, is each exit necessary and handled properly?
QO Does each switch statement have a default case?
O Are missing switch case break statements correct and marked with a comment?
QO Do named break statements send control to the right place?
O Is the nesting of loops and branches too deep, and is it correct?
QO Can any nested if statements be converted into a switch statement?
O Are null bodied control structures correct and marked with braces or comments?
3 Are all exceptions handled appropriately?
Does every method terminate’

8. Input-Output Defects (10)

QO Have all files been opened before use?

O Are the attributes of the input object consistent with the use of the file?
O Have all files been closed after use?

O Are there spelling or grammatical errors in any text printed or displayed?
QO Are all I/O exceptions handled in a reasonable way?

9. Module Interface Defects (MI)

O Are the number, order, types, and values of parameters in every method call in agreement
with the called method's declaration?

O Do the values in unis agree (e.g., inches versus yards)?

Q Ianobjector asruy is pussed, does it get chunged, and changed correctly by th called
metl

=

. Comment Defects (CM)

Does every method, class, and file have an appropriate header comment?
Does every attribute, variable, and constant declaration have a comment?

Is the underlying behavior of each method and class expressed in plain language?

Is the header comment for each method and class consistent with the behavior of the method
or class?

Do the comments and code agree?

Do the comments help in understanding the code?

Are there enough comments in the code?

Are there too many comments in the code?

UoUo dooo

Layout and Packaging Defects (LP)
Is a standard indentation and layout format used consistently?
For each method: Is it no more than about 60 lines long?

For each compile module: Is no more than about 600 lines long?

Modularity Defects (MO)

ooo

B

Is there a low level of coupling between modules (methods and classes)?

Is there a high level of cohesion within each module (methods or class)?

Is there repelitive code that could be replaced by a call to a method that provides the behavior
of the repetitive code?

Are the Java class libraries used where and when appropriate?

U ooo

Java Inspection Checklist, Page 2

E-Commerce Website Test Plan Page 22

13. Storage Usage Defects (SU)

O Are armays large enough?
O Are object and array references set to null once the object or array is no longer needed?

14. Performance Defects (PE)

O Can better data structures or more efficient algorithms be used?

O Are logical tests arranged such that the aften successful and inexpensive tests precede the
more expensive and less frequently successful tests?

O Can the cost of recomputing a value be reduced by computing it once and storing the results?

O Is every result that is computed and stored actually used?

QO Can a computation be moved outside a loop?

O Are there tests within a loop that do not need to be done?

QO Can a short loop be unrolled?

Q Are there two loops operating on the same data that can be combined into one?

O Are frequently used variables declared register?

QO Are short and commonly called methods declared inline?

Java Inspection Checklist, Page 3

Figure 5. Sample Inspection Checklist (Fox, 1999)

3.1.3 Technical Reviews

Technical reviews aim to ensure that test objects meet their specifications (Spillner, Linz, & Schaefer,
2014). While this strategy involves a review meeting, the author typically does not intend. Instead, the
reviewers do a considerable amount of preparation work to review the object and provide their
feedback. The meeting involves a recorder who takes notes, consolidates feedback from the reviewers,
and generates the final document with the results (Spillner, Linz, & Schaefer, 2014). In addition to
feedback, these review meetings involve discussions around possible alternatives, as well as possible
errors and defects. The reviewers must each have a certain level of technical expertise in order for this
process to be successful. Templates for technical reviews can be seen in Figure 6 below (Carnegie

Mellon, 1991).

E-Commerce Website Test Plan

Page 23

Chechisis lor Reviewars The Sonwars Technical Faview Procass

Software System Specification Checklist

A system specification should focus on wikar 3 system does 10 mect dhe sysiem requirements. Ouly exicrnsl
o e of et concem. A satware sy e specifcoion mat desinbe the behawors i ich a way
acns

ihat a sysiem can be designed. buill. and venfied acconting o them. Ths, there are really t
invoived

» Does the specified sysiem meet the mquirerenis”

» Does the acrualsysiem mees the specifications?
A i emand i o paced on sy socifcuions: 3 wer o ek may wan (2 ue e sy e
cations 10 decide whether or s ystem o n detemine which of several competing specfcatons 1o
piement Th wer or cem may nn'mnmmqv:uunamm uses for sysiem specificunces
racanding. venficaion, snd detailod
desn, Toe Geera Sotware: Reviewing Chckli b esecally perioen 1o sysem specfcaions. Addkions

are listed belor

et
s by b v b

(1)1 the specificaticn clear, precise. nd unaenbiguous forall spproprsee sudicoces?

_a e state what the « requirments?

4) Are user procedures specified?

(5) Are insullation, ad e

{63 Are behaviors specified for al sysem nefices”

7 ther specificition of he 1ol sysiem sspgoried by the softwan?

9) Are system data storsge e processing s

(1) Are response time and system loading constraints specified?
— (12) Are exceptions and somalons inputs defined?

- nandiing.

n Oran For Public Raview SEISM310

F——

The Seftware Tachnca Review Precass Chacuiss for Raviewsrs

Software Requirements Reviewing Checklist

A necded. It
must function

ant
s omma ot i

“The goal of

o o Sk o obemes dorsete Sk Jocim o povee s el
lAnour‘q.m smmmusl
Directians: Mark each poine as “Not Applicabie” (NA), “Accepisble As 18" (OK), * Correct with Minor Rev
v Moo (OB o - Unacoopri (NOK. Clie speih roiems by eleing 1o rambered mars
andjora specific point in the document being reviewed:

(1) The general raicnale

)T concptal model o whch e e s s b h sy il be s, e
TR et s rocsues o wi. e ances system.

(3) Dat tems that the sysiem must e, ¢ .. ceutes, abutes, and reasors:

(41 Viume estimaces for the data that e sysicm must hande.

€. socess limitations and crror-handling require

__ (51 Inicgrily consiraines that the sysem
meris.

and availability comsiaint, ¢ ., coesaquences of syscem falure and Gimes wher. e sysiem

(%) Legsl constrants. ¢ .. privacy requirercnes

) The knowledge and sill of sysiem usans. .2, how (roquently dhe typical user wil inieract wilh the

(9 Data process 14 perform, iogether with iformation needs of the user,
£ which cotcgonies of for reports

__ (10) Hardwane and software consirainis, ¢ 2. wnsiraines o the peripheral devices of progamming lan
ey

(1) Response ame requirements and expecicd system loading.

(12) Modificarions thas might be required 1, e.¢ . ikely ehanges in the Rardware o sftware environ.-

due, author, date. ind focal sundard:

seLsMato Orat For Public Review b

Figure 6. Sample Technical Review Checklists (Carnegie Mellon, 1991)

3.1.4 Informal Reviews

Checkists tor Reviowers. The Softwars Technical Revisw Procsss

General Software Reviewing Checklist

Lits of amributes of uality sotvar have been polshd i gotware enpincering Meraure 5. BoeteTe
 sell,

a helpful foundation.

Dirsctons: Mk cach oot as “Not Apptcable OXA) “Acspable A 15” (OK), “Comec with Mini Revt
o Nosted” (OKR). o “Unacceptable™ NOK)._ Clls spciic pobins by referin 0 b e
indior & 5pecific pot in the docament being rev

(1) CLARITY: The software must be clear, snambiuous, and precise.

___ (2) CORRECTNESS: The software must satsfy s specifications, 3nd the final prodact must satisfy s

__ (3) COMPLETENESS: All requied funciions are fully implememsed. All software s necessary und
sulficert.
INSISTENCY: Design and implementation technigues, 35 well a5 notatons, are wniform md 10

ot i it

___ (5) TESTABILITY: All system funcions can be empirically verified withous inordinate cast. The soft.
W 1y safe

—_ (6) LEARNABILITY: The cffont rquired fo learm how 1 use the soltware is not unseasonsble. Seriou.
isconceptions are unikely.

(7 USABILITY: The sy i expecied wsers) wse.

559 ROBUSTXESS: Coputer pogra s which they suppert, must Lonteue 1@ furction

Tocdng o tpeciiculom oven e el ks S i Gk s Tre 7R B AApRARSY
ING. € with them appropriaily.

___ (10) MODIFIABILITY: It should be possibie (o change he behasior or operating contex! of he software

(11) OTHER DEFECTS: This casegory includes any sdditional deficiencies in he ways in which the
Software meets it requiremeats.

n Oran For Pubtic Review SELSM310

Informal reviews are a lighter version of a technical review. They are author-initiated, and the planning

phase involves choosing reviewers and letting them know when to deliver feedback (Spillner, Linz, &

Schaefer, 2014). There is typically no meeting involved, but instead, colleagues cross-read each other’s

comments. In addition, the results are not explicitly documented, so there are no templates used.

Examples of informal reviews include pair programming, buddy testing, and code swapping (Spillner,

Linz, & Schaefer, 2014). This strategy is common because it is low cost, and little effort is required. In

addition, the process encourages discussion and knowledge transfer amongst colleagues.

3.2 Recommended Review Strategies

For the development of the E-Commerce Website, it is recommended to use walkthroughs, technical

reviews, and informal reviews. While inspections can be beneficial, they require a considerable amount

of time, coordination, and expertise. Walkthroughs, technical reviews, and informal reviews will provide

E-Commerce Website Test Plan Page 24

sufficient methods for identifying defects, verifying requirements, and improving code quality,

readability, and maintainability while reducing time and cost.

3.3 Static Testing Strategies

3.3.1 Tools

The following tools will be used for static testing of the E-Commerce Website: an IDE or text editor, a
compiler, and a linter. These tools will allow the developers and testers to identify syntax violations,
cross-reference program elements, check data types, detect undeclared variables, detect dead code,
and check interface consistency (Spillner, Linz, & Schaefer, 2014). Aside from detecting errors, the IDE
and linter will also ensure that code is more readable and consistent since there will be multiple
developers collaborating on the E-Commerce Website. The IDE and compiler will also assist developers

in debugging.

3.3.2 Compliance to Conventions and Standards

According to Software testing foundations: A study guide for the certified tester exam (4th ed.) (2014),
"Compliance to conventions and standards can also be checked with tools. For example, tools can be
used to check if a program follows programming regulations and standards." Tools within the IDE and
linter mentioned above should be utilized to implement rules that enforce proper coding conventions
and standards. In addition, once the programming language is selected, an associated style guide should
also be chosen. For example, if the E-Commerce Website uses Java, programmers and testers can utilize

the Google Java Style Guide (Google, n.d.) to ensure consistency and compliance.

3.3.3 Data Flow Analysis
Data flow analysis should be used for the purpose of revealing defects in code for the E-Commerce
Website. This type of analysis "checks the usage of every single variable" (Spillner, Linz, & Schaefer,

2014). This includes variables that are defined, referenced, and undefined. The data flow analysis will

E-Commerce Website Test Plan Page 25

be used to reveal data flow anomalies. “An anomaly is an inconsistency that can lead to failure but does

not necessarily do so. An anomaly may be flagged as a risk” (Spillner, Linz, & Schaefer, 2014).

3.3.4 Control Flow Analysis

Control flow analysis will also be used to find defects. Control flow utilizes graphs to represent a
sequence of statements to analyze program execution. These diagrams are used to visualize changes in
the execution of the program (the control flow) caused by logic such as conditionals and loops.
Examples of control flow graphs can be seen in Figure 7 below (GeeksForGeeks, n.d.). According to
Software testing foundations: A study guide for the certified tester exam (4th ed.) (2014), “Due to the
clarity of the control flow graph, the sequences through the program can easily be understood and
possible anomalies can be detected.” Identified anomalies may not cause the program to fail, but they

should be addressed to maintain compliance to conventions and standards.

If-then-else while

Figure 7. Example Control Flow Graphs (GeeksForGeeks, n.d.)

E-Commerce Website Test Plan Page 26

3.4 Dynamic Testing Strategies

3.4.1 Black Box Testing

Black box testing includes a group of testing techniques that aim to verify that a test object meets its
specifications and that expected outputs result from a specified set of inputs. According to Software
testing foundations: A study guide for the certified tester exam (4th ed.) (2014), the goal of these
strategies is “the verification of the functionality of the test object. It is indisputable that the highest
priority is that the software work correctly. Thus, black box techniques should always be applied.”
Therefore, it is imperative that test strategies for the E-Commerce Website include black box

techniques. The following methods will be used for testing the E-Commerce Website.

3.4.2 Equivalence Class Partitioning

This approach helps developers and testers systematically generate test cases based on domains for
various inputs. “An equivalence class is a set of data values that the tester assumes are processed in the
same way by the test object” (Spillner, Linz, & Schaefer, 2014). In other words, this strategy involves
identifying the parameters that a function accepts, generating potential valid and invalid inputs for that
parameter, creating an equivalence class that represents a group of similar inputs, selecting a
representative input for each equivalence class, and then generating test cases that eliminate

redundancy as much as possible.

3.4.3 Boundary Value Analysis

Boundary value analysis will be used in conjunction with equivalence class partitioning in order to
generate test cases for the E-Commerce Website. This strategy focuses on testing inputs that lie on the
boundaries between equivalence classes. “Boundary value analysis delivers a very reasonable addition

to the test cases that have been identified by equivalence class partitioning. Faults often appear at the

E-Commerce Website Test Plan Page 27

boundaries of equivalence classes. This happens because boundaries are often not defined clearly or are

misunderstood” (Spillner, Linz, & Schaefer, 2014).

3.4.4. State Transition Testing

This testing method is beneficial in evaluating how a system reacts to transitions in state. For example,
the E-Commerce Website involves a number of objects. These objects change and react to user input.
For example, a user’s Cart (an object) begins in an empty state. When a user views an item and then
selects “Add to Cart”, the state of the object changes—it is no longer empty. This testing strategy will be
applied to see how events related to a customer searching, selecting, and purchasing an item trigger

changes in the state of different objects.

3.4.5 Use-Case-Based Testing

Use-case-based testing will be important in evaluating the functionality of the E-Commerce Website.
This strategy involves testing the execution of paths aligned with each of the use cases illustrated in the
use case diagram for the E-Commerce Website (in the design documents). For example, one of the test
cases describes how a customer needs to be able to narrow down their search by applying filters. This
means that at least one test case needs to be generated to evaluate whether or not the website
implements that functionality correctly, and whether or not the search results are refreshed when a

customer adjusts the filters.

3.4.6 White Box Testing

White box testing is more granular than black box testing and directly involves evaluating the source
code. As stated by Analysis of statement branch and loop coverage in software testing with genetic
algorithm (2017), “White box testing involves executing a program and seeing which parts of it are
executed.” It is important to include these methods in analysis of the E-Commerce website, since these

tests are designed to evaluate branching logic, conditionals, and loops. This ensures that all paths of

E-Commerce Website Test Plan Page 28

execution are evaluated in the test environment, so that the first time a line of code is being executed is

not in production. The following white box techniques will be used to test the E-Commerce Website.

3.4.7 Statement Testing

Statement testing refers to testing each statement within a test object. The goal is 100% execution of
the code, but that is not always possible due to time and budgetary constraints. Statement testing can
help identify dead statements (where code exists that cannot be reached by any test case). Itis
important to track which lines of code have been executed to reduce redundancy and make testing

more efficient (Spillner, Linz, & Schaefer, 2014).

3.4.8 Decision/Branch Testing

Decision/branch testing focuses on executing decisions in the code, rather than individual statements.
According to Software testing foundations: A study guide for the certified tester exam (4th ed.) (2014),
“In contrast to statement coverage, branch coverage makes it possible to detect missing statements in
empty branches.” As a result of this, “Decision/branch coverage usually requires the execution of more
test cases than statement coverage" (Spillner, Linz, & Schaefer, 2014). This leads to more reliable code.
Examples of decisions include IF statements, case statements, and loops. Control flow graphs can also

be used in this type of testing to ensure that all test cases are considered.

3.4.9 Testing of Conditions

Condition testing evaluates more complex decisions influenced by multiple conditions in the code. This
technique is important so that the results of all complex decisions are considered. Spillner, Linz, &
Schaefer (2014) state, “Combinations of logical expressions are especially defect prone. Thus, a

comprehensive test is very important.”

E-Commerce Website Test Plan Page 29

3.4.10 Experience-Based Testing

Experience-based testing, also known as intuitive-based testing, will be used to supplement black box
and white box techniques in the testing of the E-Commerce Website. Intuitive-based tests leverage the
skills and experience of developers and testers to generate test cases that might otherwise be
overlooked in systematic testing. In this approach, “The test cases are based on where faults have
occurred in the past or the tester’s ideas of where faults might occur in the future” (Spillner, Linz, &

Schaefer, 2014).

4. Test Management Strategy

4.1 Test Teams

In order to achieve efficient development of the E-Commerce Website it is important to consider test
teams and an approach to each level of testing. If at all possible, developers on the team should not test
their own code. According to Software testing foundations: A study guide for the certified tester exam
(4th ed.) (2014), “because there is a tendency to be blind to our own errors, it is much more efficient to
let different people perform testing and development and to organize testing as independently as
possible from development.” For this reason, designated testers on the development team should
perform component testing. In addition, a designated testing team within the project should perform
integration testing. These testers may include individuals from the business or IT. System testing should
also be performed by a designated team that includes specialists: “Especially in system testing, it is often
necessary to extend the test team by adding IT specialists, at least temporarily, to perform work for the
test team” (Spillner, Linz, & Schaefer, 2014). This will allow the system to be viewed and tested from

multiple perspectives.

E-Commerce Website Test Plan Page 30

4.2 Test Roles

The following test roles should be assigned to individuals in order to conduct testing of the E-Commerce
Website: test manager, test designer, test automator, test administrator, and tester (Spillner, Linz, &
Schaefer, 2014). The test manager will require experience in software testing, quality management,
project management, and personnel management. The test designer should have a skillset that includes
test methods and specification, testing, and software engineering. They should also hold a degree in
Computer Science. The test automator will require experience in testing, programming, scripting, test
tools, and automation. The test administrator needs a skillset involving setting up and supporting test
environments, as well as system administration and networking. The tester should have experience
following procedures, executing tests, reporting failures, and using test objects and testing tools

(Spillner, Linz, & Schaefer, 2014).

4.3 Exit Criteria

Each test case should contain specific exit criteria, which guides testers in determining when a test is
considered to be complete. Exit criteria is important because “They prevent tests from ending too early,
for example, because of time pressure or because of resource shortages” (Spillner, Linz, & Schaefer,
2014). In other words, exit criteria will help determine when tests for the E-Commerce Website should
be started and stopped. By identifying these items up front, testers and developers can rely on criteria
to determine when to stop testing: “To make a right decision to stop testing is an arduous resolution,
the pre-defined exit criteria can help simplify this process. It is a very important step where all test
processes get stopped and this decision is either made by the tester or the whole team together”
(Nidagundi & Novickis, 2016). Having clear exit criteria allows testers to have increased confidence in

the software.

E-Commerce Website Test Plan Page 31

4.4 Test Estimated Effort

It is important to consider both the costs of testing, as well as the costs of undetected defects, when
planning software testing. It is the test manager’s responsibility to initiate test effort estimation during
the planning phase to ensure that resources are assigned and distributed properly. Estimating test
effort for the E-Commerce Website will be conducted by basing estimates on data from former or
similar projects, as this method provides the most reliable test effort estimates: “task-driven test effort
estimation tends to underestimate the testing effort. Estimating based on experience data of similar

projects or typical values usually leads to better results” (Spillner, Linz, & Schaefer, 2014).

4.5 Test and Risk

Risk-based prioritization will be implemented in order to ensure that the most significant defects within
the E-Commerce Website are revealed as early as possible. This will prevent critical defects from having
downstream affects while reducing the time and cost of handling critical defects that make it to
production. While test cases can be prioritized based on multiple factors, including frequency of
function use, visibility, priority of functional and non-functional requirements from the customer,
severity, risk, and complexity, prioritization by risk is one of the best methods for selecting test cases.
According to Software testing foundations: A study guide for the certified tester exam (4th ed.) (2014),
“Risk based prioritization of the tests ensures that risky product parts are tested more intensively and
earlier than parts with lower risk. Severe problems (causing much corrective work or serious delays) are

found as early as possible.”

Risk is “the mathematical product of the loss or damage due to failure and the probability (or
frequency) of failure resulting in such damage” (Spillner, Linz, & Schaefer, 2014). In order to reduce risk,
it is important to implement risk management techniques. Risk management involves identifying,

prioritizing, and mitigating risks. Testing can serve as a risk mitigation technique because it “provides

E-Commerce Website Test Plan Page 32

information about existing problems and the success or failure of correction” (Spillner, Linz, & Schaefer,

2014). Risk-based testing can be used to generate test cases that address potential areas of risk.

4.6 Incident Reporting

Incident reporting will be used throughout the development and testing of the E-Commerce Website in
order to document and manage incidents. Every defect that is determined to be significant and
legitimate (not the result of a poorly designed test) should be documented. The template shown in
Figure 8 (Spillner, Linz, & Schaefer, 2014) below will be used to document incidents. This will allow the
communication of incidents to be consistent, and developers will be able to easily reproduce defects.
Homes (2012) stresses the importance of clearly communicating defects: “Determining the impact in an
understandable way for developers (data loss, functionality loss, software instability, etc.) and for
customers and the hierarchy (impacts in financial terms or in usability terms, noncompliance to

requirements, etc.) enables a quick recognition of the anomaly.”

The incident report will contain the following information: the tested software, test
environment, tester’s name, the class that contains the defect, prioritization of the defect, and
information relevant to reproducing and locating the defect (Spillner, Linz, & Schaefer, 2014). Testers,
developers, customers and users can report incidents. When corrections are made, the incident report

should be updated in the database. This will help the project team track and manage incidents.

E-Commerce Website Test Plan

Attribute Meaning
Id / Number Unique identifier/number for each report
Test object Identifier or name of the test object
Version Identification of the exact version of the test object
.§ Platform Identification of the HW/SW platform or the test environment
8 where the problem occurs
=
S | Reporting Identification of the reporting tester (possibly with test level)
L | person
Responsible de- | Name of the developer or the team responsible for the test
veloper object
Reporting date | Date and possibly time when the problem was observed
Status The current state (and complete history) of processing for the
report (section 6.6.4)
c | Severity Classification of the severity of the problem (section 6.6.3)
=]
E Priority Classification of the priority of correction (section 6.6.3)
Eﬁ Requirement Pointer to the (customer-) requirements which are not fulfilled
8 due to the problem
Problem source | The project phase, where the defect was introduced
(analysis, design, programming); useful for planning process
improvement measures
Test case Description of the test case (name, number) or the steps
necessary to reproduce the problem
c
% Problem Description of the problem or failure that occurred;
§ description expected vs. actual observed results or behavior
2 | comments List of comments on the report from developers and other staff
£ involved
2
o | Defect Description of the changes made to correct the defect
2 | correction
References Reference to other related reports

Figure 8. Incident Reporting Template (Spillner, Linz, & Schaefer, 2014)

4.7 Defect Classification

Page 33

Defect classification will be implemented for prioritizing incidents related to the E-Commerce Website.

The severity level will reflect the level of impairment caused by the defect. The following 5 levels of

severity will be used: 1-Fatal, 2-Very Serious, 3-Serious, 4-Moderate, and 5-Mild. The criteria for these

levels can be seen in Figure 9 (Spillner, Linz, & Schaefer, 2014) below. Levels of priority will also be

implemented in order to identify how quickly a problem should be addressed. The following four levels

of priority will be used: 1-Immediate, 2-Next Release, 3-On Occasion, and 4-Open. The criteria assigned

to each of these priority levels can be seen in Figure 10 (Spillner, Linz, & Schaefer, 2014) below.

E-Commerce Website Test Plan Page 34

Class

Description

1 — FATAL

System crash, possibly with loss of data. The test object can-
not be released in this form.

2 —VERY SERIOUS | Essential malfunctioning; requirements not adhered to or

incorrectly implemented; substantial impairment to many
stakeholders. The test object can only be used with severe
restrictions (difficult or expensive workaround).

3 - SERIOUS

Functional deviation or restriction (*"normal” failure); require-
ment incorrectly or only partially implemented; substantial
impairment to some stakeholders. The test object can be used
with restrictions.

4 - MODERATE

Minor deviation; modest impairment to few stakeholders.
System can be used without restrictions.

5 - MILD

Mild impairment to few stakeholders; system can be used with-
out restrictions. For example, spelling errors or wrong screen
layout.

Figure 9. Severity Levels (Spillner, Linz, & Schaefer, 2014)

Priority

Description

1 - IMMEDIATE

The user's business or working process is blocked or the
running tests cannot be continued. The problem requires
immediate, or if necessary, provisional repair (—“patch”).

2 - NEXT RELEASE

The correction will be implemented in the next regular
product release or with the delivery of the next (internal) test
object version.

3 — ON OCCASION

The correction will take place when the affected system parts
are due for a revision anyway.

4 - OPEN

Correction planning has not taken place yet.

Figure 10. Priority Levels (Spillner, Linz, & Schaefer, 2014)

4.8 Configuration Management

Configuration management will be used throughout the development of the E-Commerce Website in

order to track the version history of the project, as well as to allow multiple developers to make

contributions without interfering with one another’s work. Poor configuration management can lead to

E-Commerce Website Test Plan Page 35

a number of avoidable problems such as developers overwriting one another’s code, the inability to
integrate components because of unknown versions, and difficulty testing because changes to a
component are untraceable or testers don’t know which test cases belong to which version of a test
object (Spillner, Linz, & Schaefer, 2014). These circumstances can be avoided by implementing version
management, configuration identification, incident and change status control, and configuration audits.
All of these activities can be achieved through the use of standard operating procedures and test
management tools: “Modern file version control systems, such as git, mercurial, or svn implement a
concept of revision or commit. This concept may be crucial to store program source code, as it allows

users to view previous versions of stored files” (Dmitriev, Valter, & Kontsov, 2020).

5. Test Tools

5.1 Introduction

Test tools can ease the burden of manual software testing. Because the E-Commerce Website is a new
build, and a fairly complex system, test tools should be acquired and utilized to increase test efficiency
and reliability, reduce manual testing, and achieve what some manual tests cannot, such as load and
performance testing (Spillner, Linz, & Schaefer, 2014). Before selecting test tools, a cost-benefit analysis
should be conducted. The phases of testing for the E-Commerce Website may involve tools for test

management and control, test specification, static testing, dynamic testing, and non-functional testing.

5.2 Test Management and Control Tools

Tools that support test management and control allow testers and project managers to document,
prioritize, list, and maintain test cases (Spillner, Linz, & Schaefer, 2014). A test management tool that
may be considered for development of the E-Commerce Website is Jira. Test management tools can be
used to ensure that there are test cases to address each software requirement. A test tool with this

functionality is considered a requirements management tool. Test execution tools are another form of

E-Commerce Website Test Plan Page 36

test management tool that execute test scripts automatically and document the results. Incident
management tools track software defects and their resolutions. Configuration management tools track
versions and builds that will be tested. Lastly, tool integration can be used to combine multiple test
management tools into one (Spillner, Linz, & Schaefer, 2014). A cost-benefit analysis specific to the E-

Commerce Website should be used to determine which tools will be the most beneficial to the project.

5.3 Test Specification Tools

Tools for the specification phase of testing should also be considered regarding the E-Commerce
Website. These tools help test designers generate test data. There are four types of test generators:
database-based test generators, code-based test generators, interface-based test generators, and
specification-based test generators. According to Software testing foundations: A study guide for the
certified tester exam (4th ed.) (2014), database-based test generators “process database schemas and
are able to produce test databases from these schemas.” These tools help generate test data by
filtering through databases. An example of such a tool is DatProf, which supports Windows operating
systems and generates synthetic data using most common database technologies (Software Testing
Help, 2020). Code-based test generators use the source code to generate test data. While these tools
can be helpful, they cannot detect faults caused by missing code. In addition, Spillner, Linz, & Schaefer
(2014) state, “The use of code as a test basis for testing the code itself is in general a very poor
foundation.” However, code-based test generators can be helpful for regression testing. Interface-
based test generators identify parameter domains, which can then be used for equivalence class
partitioning and boundary value analysis to generate test cases (Spillner, Linz, & Schaefer, 2014). They
are also helpful when testing API’'s and GUI’s. Specification-based test generators synthesize test data

from formal specifications or models.

E-Commerce Website Test Plan Page 37

5.4 Static Testing Tools

Static testing tools should be applied directly to the source code of the E-Commerce Website. Because
they support the evaluation of source code, they can help identify defects early in the development
process, before code is even executed. Review tools are a form of static testing that serve like checklists
to help testers plan, execute, and evaluate code reviews (Spillner, Linz, & Schaefer, 2014). Static
analyzers can also be used to identify areas in the code that are complex, risky, inconsistent, defect-
prone, violate programming standards, or pose portability issues. These areas can then be refactored,
and or prioritized for further testing. Model checkers may also be considered in order to analyze the
UML models to check for “missing states, state transitions, and other inconsistencies in a model”
(Spillner, Linz, & Schaefer, 2014). An example of a static analysis tool is Polyspace. This tool, released in
2014 consists of two components: Polyspace Code Prover and Polyspace Bug Finder. “The former

identifies every code instruction by applying all possible values of variables, while the later is used to

perform static analysis” (Khalid, 2017).

5.5 Dynamic Testing Tools

Utilizing dynamic testing tools during development of the E-Commerce Website will help reduce the
mechanical work involved with manual test execution. These tools provide the test object with input
data, and record the output. Examples of dynamic testing tools are debuggers, test drivers and test
frameworks, simulators, test robots, comparators, dynamic analyzers, and tools for coverage analysis
(Spillner, Linz, & Schaefer, 2014). Debuggers can be found in popular text editors and IDE’s. They allow
testers and developers to execute a program one line at a time. A program can also be paused mid-
execution to observe or manipulate variables. Test drivers and test frameworks are often used for
component and integration tests, and are designed for specific programming languages and
environments (Spillner, Linz, & Schaefer, 2014). They provide control over the test object. Simulators

mirror the real system environment, but are used when the tests cannot be executed there. Test robots

E-Commerce Website Test Plan Page 38

log manual inputs such as keyboard strokes or mouse clicks, store them as a script, and then can execute
the script in order to replay that sequence of inputs in an automated fashion. These tools are especially
helpful for regression testing. Comparators identify deviations from expected results. Dynamic
analyzers evaluate memory usage and allocation, as well as identify “memory leaks, wrong pointer
allocation, or pointer arithmetic problems” (Spillner, Linz, & Schaefer, 2014). Finally, coverage analysis
tools track statement and branch coverage to ensure that as much code as possible is executed during
testing. An example of a dynamic analysis tool is VectorCast. “VectorCAST ICover is used to test code

coverage of source code through dynamic analysis” (Khalid, 2017).

5.6 Non-Functional Testing Tools

Non-functional testing tools should also be considered for assessing the quality attributes of the E-
Commerce Website. Often, these attributes can be difficult to evaluate using manual methods alone.
According to Software testing foundations: A study guide for the certified tester exam (4th ed.) (2014),
“Load test tools generate a synthetic load (i.e., parallel data-base queries, user transactions, or network
traffic.” This allows testers to determine how a system will behave under more realistic conditions.
Performance tests can also reveal the response time of a system. Load and performance tools are
especially helpful when a system expects to experience high traffic, or when it needs to handle large
numbers of parallel requests (Spillner, Linz, & Schaefer, 2014). They can also be helpful in identifying
bottlenecks within the system. An example of a tool used for performance and load testing is Apache
JMeter (Khandelwal, 2019). Aside from performance and load testing tools, other non-functional testing
tools include those for testing security and those for assessing data quality. It is important to identify
security vulnerabilities early on in development. As Benchmark Requirements for Assessing Software
Security Vulnerability Testing Tools (2018) states, “Developers cannot afford to believe that their
security requirements during development are perfect and impenetrable, no matter how thorough their

precautions might be.” In addition to testing for security vulnerabilities, data quality assessment tools

E-Commerce Website Test Plan Page 39

can ensure that data both before and after migration or conversion is correct and complete. Through
the use of these testing tools, developers, testers, and project managers can produce an E-Commerce

Website that is robust and reliable.

E-Commerce Website Test Plan Page 40

6. Resources

ADA. (2007). Website Accessibility Under Title Il of the ADA. Retrieved April 5, 2020 from
https://www.ada.gov/pcatoolkit/chap5toolkit.htm

Ali, S., Imran, M., Hafeez, Y., Abbasi, T. R., Haider, W., & Salam, A. (2018). Improving Component Based
Software Integration Testing Using Data Mining Technique. 2018 12th International Conference
on Mathematics, Actuarial Science, Computer Science and Statistics (MACS), Mathematics,
Actuarial Science, Computer Science and Statistics (MACS), 2018 12th International Conference
On, 1-6. https://doi-org.proxy- library.ashford.edu/10.1109/MACS.2018.8628368

Bahaweres, R. B., Zawawi, K., Khairani, D., & Hakiem, N. (2017). Analysis of statement branch and loop
coverage in software testing with genetic algorithm. 2017 4th International Conference on
Electrical Engineering, Computer Science and Informatics (EECSI), Electrical Engineering,
Computer Science and Informatics (EECSI), 2017 4th International Conference On, 1-6.
https://doi-org.proxy-library.ashford.edu/10.1109/EECSI.2017.8239088

Carnegie Mellon Software Engineering Institute. (1991). The Software Technical Review Process.
Retrieved April 18, 2020 from https://apps.dtic.mil/dtic/tr/fulltext/u2/a236122.pdf

Dmitriev, S. O., Valter, D. A., & Kontsov, A. M. (2020). System for Efficient Storage and Version Control of
Arbitrary File Collections. 2020 IEEE Conference of Russian Young Researchers in Electrical and
Electronic Engineering (EIConRus), Russian Young Researchers in Electrical and Electronic
Engineering (EIConRus), 2020 IEEE Conference Of, 295-298. https://doi-org.proxy-
library.ashford.edu/10.1109/EIConRus49466.2020.9038922

Eriksson, U. (2012, April 5). Functional vs non functional requirements ReQtest.
https://reqtest.com/requirements-blog/functional-vs-non-functional-requirements/

Font Awesome. (n.d.) Font Awesome Icons. Retrieved April 6, 2020 from

https://fontawesome.com/icons?d=gallery

E-Commerce Website Test Plan Page 41

Fox, C. (1999). Java Inspection Checklist. Retrieved April 18, 2020 from
http://www.cs.toronto.edu/~sme/CSC444F/handouts/java_checklist.pdf

GeeksForGeeks.com. (n.d.). Software Engineering: Control Flow Graph (CFG). Retrieved April 18, 2020
from https://www.geeksforgeeks.org/software-engineering-control-flow-graph-cfg/

GeeksForGeeks.com. (n.d.). Software Engineering: Integration Testing. Retrieved April 11, 2020 from
https://www.geeksforgeeks.org/software-engineering-integration-testing/

Google. (n.d.). Google Java Style Guide. Retrieved April 18, 2020 from
https://google.github.io/styleguide/javaguide.html

Greene, V. (2018, April 8). The top 5 functional requirements for eCommerce websites Acro Blog.
https://blog.acromedia.com/the-top-5-functional-requirements-for-ecommerce-websites

Homes, B. (2012). Fundamentals of Software Testing, John Wiley & Sons, Incorporated. ProQuest
Ebook Central, http://ebookcentral.proquest.com/lib/ashford-
ebooks/detail.action?doclD=1120766.

Created from ashford-ebooks on 2020-04-25 14:33:08.

Khalid, R. (2017). Towards an automated tool for software testing and analysis. 2017 14th International
Bhurban Conference on Applied Sciences and Technology (IBCAST), Applied Sciences and
Technology (IBCAST), 2017 14th International Bhurban Conference On, 461-465. https://doi-
org.proxy-library.ashford.edu/10.1109/IBCAST.2017.7868094

Khandelwal, A. (2019). Top 10 Non -Functional Testing Tools | Pros and Cons. Retrieved May 5, 2020
from https://testinggenez.com/non-functional-testing-tools/

Kumar, J. (2015). The e-commerce problem statement. In Apache Solr patterns. Packt Publishing.
https://bit.ly/2Rn8inE

M. Parizi, R., Qian, K., Shahriar, H., Wu, F., & Tao, L. (2018). Benchmark Requirements for Assessing

Software Security Vulnerability Testing Tools. 2018 IEEE 42nd Annual Computer Software and

E-Commerce Website Test Plan Page 42

Applications Conference (COMPSAC), Computer Software and Applications Conference
(COMPSAC), 2018 IEEE 42nd Annual, COMPSAC, 01, 825-826. https://doi-org.proxy-
library.ashford.edu/10.1109/COMPSAC.2018.00139

Mohamed Suffian, M. D., Fairul Rizal, F., Loo, F. A., Aman, N. F., & Bajuri, N. (2016). Software capability
rating using system testing scores. 2016 IEEE Conference on Open Systems (ICOS), Open Systems
(1C0S), 2016 IEEE Conference On, 105-110. https://doi-org.proxy-
library.ashford.edu/10.1109/1C0S.2016.7881997

Nidagundi, P., & Novickis, L. (2016). Introduction to Lean Canvas Transformation Models and Metrics in
Software Testing. Applied Computer Systems, 19(1), 30.

Software Testing Help. (2020). Top 10 Best Test Data Generation Tools in 2020. Retrieved May 5, 2020
from https://www.softwaretestinghelp.com/test-data-generation-tools/.

Spillner, A,, Linz, T., & Schaefer, H. (2014). Software testing foundations: A study guide for the
certified tester exam (4th ed.). Rocky Nook.

Wiegers, K. E. (1999). Software requirements specifications for <project> [Template].

https://web.cs.dal.ca/~hawkey/3130/srs_template-ieee.doc

E-Commerce Website Test Plan

Appendix A: Glossary

ADA- Americans with Disabilities Act of 1990
HTTP- hypertext transfer protocol

Pll- Personally Identifiable Information

SRS- Software Requirements Specification
TCP- transmission control protocol

Ul- User Interface

UX- User Experience

Page 43

